Determination Optimum SVMs Classifiers for Hyperspectral Imagery Based on Ant Colony Optimization

Article Preview

Abstract:

Referring to robustness of SVMs in high dimensional space, they are reliable tools for classification of hyperspectral imagery. However their performance is directly affected by two aspects: parameter determination and optimum feature subset selection. According to capacity of population based meta-heuristic optimization algorithm such as Ant Colony Optimization (ACO), they can find optimum or near optimum solution in complex optimization problems. This paper evaluates the potential of Binary ACO (BACO) in parameter determination, feature selection and both of them simultaneously in SVMs based classification system for hyperspectral imagery. Obtained results in comparison with genetic algorithm show superiority of BACO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

792-798

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ch.I. Chang, Hyperspectral Data Exploitation Theory and Application, A JOHN WILEY & SONS, INC., 2007, pp.19-29.

Google Scholar

[2] G.F. Hughes, On the mean accuracy of statistical pattern recognition. IEEE Trans. Inform. Theory, 1968, pp.55-63.

DOI: 10.1109/tit.1968.1054102

Google Scholar

[3] F. Tan, X. Fu, Y. Zhang, A genetic algorithm-based method for feature subset selection, Soft compute 12, 2008, pp.111-120.

DOI: 10.1007/s00500-007-0193-8

Google Scholar

[4] G. Camps-Valls, L. Bruzzone, Kernel-Based Methods for Hyperspectral, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 6, JUNE 2005, pp.1351-1362.

DOI: 10.1109/tgrs.2005.846154

Google Scholar

[5] S. Arlot, A. Celisse, , A survey of cross-validation procedures for model selection, (2010).

Google Scholar

[6] C-L. Huang, C-J. Wang, A GA-based feature selection and parameters optimization for support vector machines, Expert Systems with Applications 31, 2006, p.231–240.

DOI: 10.1016/j.eswa.2005.09.024

Google Scholar

[7] H. Yu, G. Gu, H. Liu, J. Shen, and J. Zhao, A Modified Ant Colony Optimization Algorithm for Tumor Marker Gene Selection, Genomics Proteomics Bioinformatics Vol. 7 No. 4 December 2009, pp.200-208.

DOI: 10.1016/s1672-0229(08)60050-9

Google Scholar

[8] A. C. Lorena, A. C.P.L.F. de Carvalho, Evolutionary tuning of SVM parameter vales in multiclass problem,. Neurocomputing, 2008, pp.3326-3334.

DOI: 10.1016/j.neucom.2008.01.031

Google Scholar

[9] C.H. Wu, G.H. Tzeng, Y.J. Goo, , W.C. Fang, A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy, Expert System with Applications 32, 2007, pp.397-408.

DOI: 10.1016/j.eswa.2005.12.008

Google Scholar

[10] C-W. Hsu, C-C. Chang, , C-J. Lin,. A Practical Guide to Support Vector Classification. , (2010).

Google Scholar

[11] B.F. Souza, A.C.P.L.F. de Carvalho, R. Calvo, , and R.P. Ishii, Multiclass SVM Model Selection Using Particle Swarm Optimization, Proceedings of the Sixth International Conference on Hybrid Intelligent Systems, (2006).

DOI: 10.1109/his.2006.264914

Google Scholar

[12] X. Zhang, X. Cheng, Z. He, An ACO-based algorithm for parameter optimization of support vector machines, Expert System with Applications 37, 2010, pp.6618-6628.

DOI: 10.1016/j.eswa.2010.03.067

Google Scholar

[13] S-W. Lin, , K-Ch. Ying, S-C. Chen, Z-J. Lee, Particle swarm optimization for parameter determination and feature selection of support vector machines, Expert System with Applications 35, 2008, pp.1817-1824.

DOI: 10.1016/j.eswa.2007.08.088

Google Scholar

[14] I. Babaoglu, O. Findik, E. Ülker. A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine, Expert Systems with Applications 37, 2010, p.3177.

DOI: 10.1016/j.eswa.2009.09.064

Google Scholar

[15] C-L. Huang, ACO-based hybrid classification system with feature subset selection and model parameters optimization, Neurocomputing 73, 2009, p.438–448.

DOI: 10.1016/j.neucom.2009.07.014

Google Scholar

[16] P. Watanachaturaporn, , K. Arora, and M. Varshney, Hyperspectral Image Classification Using Support Vector Machines: A Comparsion with Decision Tree and Neural Network classifiers,. ASPRS, Baltimore, Maryland, 2005. TABLE I. Obtained results in model selection, feature selection and both of them simultaneously based on BACO and GA OA Kappa Class9 Class8 Class7 Class6 Class5 Class4 Class3 Class2 Class1 Kernel Parameter C Number of Features Proposed Problem.

Google Scholar

[85] 47.

Google Scholar

7004 1 1.

Google Scholar

7850 2489. 97 935. 9 185 Model Selection BACO.

Google Scholar

[90] 81.

Google Scholar

7689 1.

Google Scholar

7921 1 1.

Google Scholar

8677 2048 64 87 Feature Selection.

Google Scholar

[91] 24.

Google Scholar

7689 1.

Google Scholar

7684 1 1.

Google Scholar

8684 2080. 6 1006. 7 68 Model & Feature Selection.

Google Scholar

[85] 47.

Google Scholar

7004 1 1.

Google Scholar

7850 2488. 61 220. 22 185 Model Selection GA.

Google Scholar

[88] 46.

Google Scholar

7169 1.

Google Scholar

7234 1 1.

Google Scholar

8508 2048 64 102 Feature Selection.

Google Scholar

[89] 53.

Google Scholar

6438 1.

Google Scholar

7690 1 1.

Google Scholar

8508 2057. 5 181. 16 90 Model & Feature Selection.

Google Scholar