[1]
Ch.I. Chang, Hyperspectral Data Exploitation Theory and Application, A JOHN WILEY & SONS, INC., 2007, pp.19-29.
Google Scholar
[2]
G.F. Hughes, On the mean accuracy of statistical pattern recognition. IEEE Trans. Inform. Theory, 1968, pp.55-63.
DOI: 10.1109/tit.1968.1054102
Google Scholar
[3]
F. Tan, X. Fu, Y. Zhang, A genetic algorithm-based method for feature subset selection, Soft compute 12, 2008, pp.111-120.
DOI: 10.1007/s00500-007-0193-8
Google Scholar
[4]
G. Camps-Valls, L. Bruzzone, Kernel-Based Methods for Hyperspectral, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 6, JUNE 2005, pp.1351-1362.
DOI: 10.1109/tgrs.2005.846154
Google Scholar
[5]
S. Arlot, A. Celisse, , A survey of cross-validation procedures for model selection, (2010).
Google Scholar
[6]
C-L. Huang, C-J. Wang, A GA-based feature selection and parameters optimization for support vector machines, Expert Systems with Applications 31, 2006, p.231–240.
DOI: 10.1016/j.eswa.2005.09.024
Google Scholar
[7]
H. Yu, G. Gu, H. Liu, J. Shen, and J. Zhao, A Modified Ant Colony Optimization Algorithm for Tumor Marker Gene Selection, Genomics Proteomics Bioinformatics Vol. 7 No. 4 December 2009, pp.200-208.
DOI: 10.1016/s1672-0229(08)60050-9
Google Scholar
[8]
A. C. Lorena, A. C.P.L.F. de Carvalho, Evolutionary tuning of SVM parameter vales in multiclass problem,. Neurocomputing, 2008, pp.3326-3334.
DOI: 10.1016/j.neucom.2008.01.031
Google Scholar
[9]
C.H. Wu, G.H. Tzeng, Y.J. Goo, , W.C. Fang, A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy, Expert System with Applications 32, 2007, pp.397-408.
DOI: 10.1016/j.eswa.2005.12.008
Google Scholar
[10]
C-W. Hsu, C-C. Chang, , C-J. Lin,. A Practical Guide to Support Vector Classification. , (2010).
Google Scholar
[11]
B.F. Souza, A.C.P.L.F. de Carvalho, R. Calvo, , and R.P. Ishii, Multiclass SVM Model Selection Using Particle Swarm Optimization, Proceedings of the Sixth International Conference on Hybrid Intelligent Systems, (2006).
DOI: 10.1109/his.2006.264914
Google Scholar
[12]
X. Zhang, X. Cheng, Z. He, An ACO-based algorithm for parameter optimization of support vector machines, Expert System with Applications 37, 2010, pp.6618-6628.
DOI: 10.1016/j.eswa.2010.03.067
Google Scholar
[13]
S-W. Lin, , K-Ch. Ying, S-C. Chen, Z-J. Lee, Particle swarm optimization for parameter determination and feature selection of support vector machines, Expert System with Applications 35, 2008, pp.1817-1824.
DOI: 10.1016/j.eswa.2007.08.088
Google Scholar
[14]
I. Babaoglu, O. Findik, E. Ülker. A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine, Expert Systems with Applications 37, 2010, p.3177.
DOI: 10.1016/j.eswa.2009.09.064
Google Scholar
[15]
C-L. Huang, ACO-based hybrid classification system with feature subset selection and model parameters optimization, Neurocomputing 73, 2009, p.438–448.
DOI: 10.1016/j.neucom.2009.07.014
Google Scholar
[16]
P. Watanachaturaporn, , K. Arora, and M. Varshney, Hyperspectral Image Classification Using Support Vector Machines: A Comparsion with Decision Tree and Neural Network classifiers,. ASPRS, Baltimore, Maryland, 2005. TABLE I. Obtained results in model selection, feature selection and both of them simultaneously based on BACO and GA OA Kappa Class9 Class8 Class7 Class6 Class5 Class4 Class3 Class2 Class1 Kernel Parameter C Number of Features Proposed Problem.
Google Scholar
7850 2489. 97 935. 9 185 Model Selection BACO.
Google Scholar
8677 2048 64 87 Feature Selection.
Google Scholar
8684 2080. 6 1006. 7 68 Model & Feature Selection.
Google Scholar
7850 2488. 61 220. 22 185 Model Selection GA.
Google Scholar
8508 2048 64 102 Feature Selection.
Google Scholar
8508 2057. 5 181. 16 90 Model & Feature Selection.
Google Scholar