[1]
W. König, D.F. Dauw, G. Levy and U. Panten, "EDM - future steps towards the machining of ceramics", CIRP Annals - Manufacturing Technology, 37 [2], 623–631 (1988)
DOI: 10.1016/s0007-8506(07)60759-8
Google Scholar
[2]
B. Lauwers, J.P. Kruth, W. Liu, W. Eeraerts, B. Schacht and P. Bleys, "Investigation of material removal mechanisms in EDM of composite ceramic materials", Journal of Material Processing Technology, 149, 347-352 (2004)
DOI: 10.1016/j.jmatprotec.2004.02.013
Google Scholar
[3]
K. Liu, "Influence of the pulse shape on the EDM performance of Si3N4-TiN ceramic composite", CIRP Annals – Manufacturing Technology, 58, 217-220, (2009)
DOI: 10.1016/j.cirp.2009.03.002
Google Scholar
[4]
K. Bonny, P. De Baets, J. Vleugels, A. Salehi, O. Van der Biest, B. Lauwers and W. Liuc, "Influence of secondary electro-conductive phases on the electrical discharge machinability and frictional behavior of ZrO2-based ceramic composites", Journal of Materials Processing Technology, 208, 423-430, (2008)
DOI: 10.1016/j.jmatprotec.2008.01.020
Google Scholar
[5]
K. Bonny, P. De Baets, J. Vleugels, O. van der Biest, A. Salehi, W. Liu and B. Lauwers, "Reciprocating sliding friction and wear behavior of electrical discharge machined zirconia-based composites against WC-Co cemented carbide", International Journal of Refractory Metals & Hard Materials, 27, 449-457, (2009)
DOI: 10.1016/j.ijrmhm.2008.07.004
Google Scholar
[6]
K.M. Patel, P. M. Pandey and P.V. Rao, "Surface integrity and material removal mechanisms associated with EDM of Al2O3 ceramic composite", International Journal of Refractory Metals & Hard Materials, 27 , 892-899, (2009)
DOI: 10.1016/j.ijrmhm.2009.05.003
Google Scholar
[7]
C.-C. Liu, "Microstructure and tool electrode erosion in EDMed of TiN/Si3N4 composites", Materials Science and Engineering, A363, 221-227, (2003)
DOI: 10.1016/s0921-5093(03)00630-0
Google Scholar
[8]
F.F. Lange, "Transformation toughening – Part 4 Fabrication, fracture toughness and strength of Al2O3-ZrO2 composites", Journal of Materials Science, 17,247-254, (1982)
DOI: 10.1007/bf00809060
Google Scholar
[9]
W. Burger and H. G. Richter, "High Strength and Toughness Alumina Matrix Composites by Transformation Toughening and 'In situ' Platelet Reinforcement (ZPTA) – The New Generation of Bioceramics", Key engineering Materials, Vols. 192-195, 545-548, (2001)
DOI: 10.4028/www.scientific.net/kem.192-195.545
Google Scholar
[10]
B. Basu, J. Vfleugels and O. Van der Biest, "Toughness tailoring of yttria-doped zirconia ceramics", Materials Science and Endineering, A380, 215-221, (2004)
DOI: 10.1016/j.msea.2004.03.065
Google Scholar
[11]
K. Niihara, "A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics", Journal of Materials Science Letters, Vol. 2, 221-223, (1983)
DOI: 10.1007/bf00725625
Google Scholar
[12]
G.R. Anstis, P. Chantikul, B.R. Lawn and D.B. Marshall, "A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements", Journal of American Ceramic Society, Vol. 64, No. 9, (1981)
DOI: 10.1111/j.1151-2916.1981.tb10320.x
Google Scholar
[13]
P. Chantikul, G.R. Anstis, B.R. Lawn and D.B. Marshall, "A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method", Journal of American Ceramic Society, Vol. 64, No. 9, (1981)
DOI: 10.1111/j.1151-2916.1981.tb10321.x
Google Scholar
[14]
C.-C. Liu, and J.-L. Huang, "Effect of the electrical discharge machining on strength and reliability of TiN/Si3N4 composites", Ceramics International, 29, 679-687, (2003)
DOI: 10.1016/s0272-8842(02)00217-1
Google Scholar