Study on Single-Pulse Discharges under Special Flushing Conditions

Article Preview

Abstract:

Investigations on the special flushing conditions with an electrical discharge drilling machine were done to analyze single discharges. While flushing speeds in electrical discharge drilling are quiet higher as in electrical discharge sinking, the craters are influenced by the strong flushing. The topography of the craters in terms of depth, length and volume were analyzed. Crater depth and crater length are increasing with higher flushing speeds. Under a dielectric flushing the removed material on the tool electrode is less than on the workpiece. If the volume flow is high enough, the whole plasma channel is pushed in the direction of the flow. A computational fluid dynamics analysis was done to simulate the flow speeds in the narrow gap. Flow speeds above 500 m/s were simulated in the gap.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 504-506)

Pages:

1183-1188

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.-J. Siebers, Funkenerosives Senken mit wässrigen Arbeitsmedien – Grundlagen, Technologie und Wirtschaftlichkeit, Diss. RWTH Aachen (1993)

Google Scholar

[2] W.-I. Jutzler, Funkenerosives Senken – Verfahrenseinflüsse auf die Oberflächenbeschaffenheit und die Festigkeit des Werkstücks, Diss. RWTH Aachen (1982)

Google Scholar

[3] A. Karden, Funkenerosive Senkbearbeitung mit leistungssteigernden Elektrodenwerkstoffen und Arbeitsmedien, Diss. RWTH Aachen (2000)

Google Scholar

[4] J. M. Dehmer, Prozeßführung beim funkenerosiven Senken durch adaptive Spaltweitenregelung und Steuerung der Erosionsimpulse, Diss. RWTH Aachen (1992)

Google Scholar

[5] H.-P. Schulze, M. Läuter, W. Rehbein, K. Mecke, G. Wollenberg, Channel spreading during the spark erosion for selected conditions and working fluids, Proceedings of the 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 19–22 (2003), 297–300

DOI: 10.1109/ceidp.2003.1254852

Google Scholar

[6] W. Koenig, R. Weill, R. Wertheim, W.-I. Jutzler, The Flow Fields in the Working Gap with Electro-Discharge-Machining, Annals of the CIRP 25 (1977) 71–76

Google Scholar

[7] S. Piltz, Grundlagen und Prozessstrategien der Mikrofunkenerosion für die Bearbeitung von Rotationsbauteilen, Diss. TU Berlin (2007)

Google Scholar

[8] C. J. Heuvelmann, Some Aspects of the Research on Electro-Erosion Machining, Annals of the CIRP Vol. 16 (1996) 195-199

Google Scholar

[9] S. H. Lee, X. P. Li, Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide, Journal of Materials Processing Technology, Volume 115 (2001) 344-358

DOI: 10.1016/s0924-0136(01)00992-x

Google Scholar

[10] M. Kunieda, H. Xia, N. Nishiwaki, N. Kinoshita, Observation of Arc Column Movement during Monopulse Discharge in EDM, CIRP Annals - Manufacturing Technology, Volume 41, Issue 1 (1992) 227-230

DOI: 10.1016/s0007-8506(07)61191-3

Google Scholar

[11] D. D. Dibitonto, P. T. Eubank, M. R. Patel, M. A. Barrufet, Theoretical models of the electrical discharge machining process I; A simple cathode erosion model, J. Appl. Phys. 37 (1993) 7900–7909

DOI: 10.1063/1.343994

Google Scholar