Formability of Ultrafine-Grained AA6016 Sheets Processed by Accumulative Roll Bonding

Article Preview

Abstract:

Aluminium alloy AA6016 was accumulative roll bonded up to eight cycles in order to produce an ultrafine-grained microstructure. The formability of these sheets was investigated by means of bending tests. Furthermore the influence of a local laser heat treatment at the bending edge is observed. The strength of the UFG samples is increased by a factor of around two compared to the conventionally grained T4 condition which also results in up to 50 % higher punch forces needed for bending of ARB processed samples. An anisotropic bending behaviour is observed. By applying a tailored laser heat treatment along the bending edge prior to the bending tests a local recrystallization and recovery at the deformation zone of the samples is achieved. Thus, ductility is increased locally whereby bending to an angle of 80° is possible with lower forming forces compared to the non-heat treated specimens. The results are compared to previous studies on mechanical properties and formability investigations of ARB processed AA6016.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 504-506)

Pages:

575-580

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Zehetbauer, Y.T. Zhu (Eds.), Bulk Nanostructured Materials, Wiley VCH, Weinheim, 2009.

Google Scholar

[2] S.H. Whang (Ed.), Nanostructural metals and alloys, Woodhead Publishing Limited, Cambridge, 2011.

Google Scholar

[3] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative-roll bonding (ARB) process, Scripta Mater. 39 (1998) 1221-1227.

DOI: 10.1016/s1359-6462(98)00302-9

Google Scholar

[4] N. Tsuji, Y. Saito, S.H. Lee, Y. Minamino, ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials, Adv. Eng. Mater. 5 (2003) 338-344.

DOI: 10.1002/adem.200310077

Google Scholar

[5] H.W. Höppel, J. May, M. Göken, Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding, Adv. Eng. Mater. 6 (2004) 781-784.

DOI: 10.1002/adem.200306582

Google Scholar

[6] I. Topic, H.W. Höppel, M. Göken, Deformation behaviour, microstructure and processing of accumulative roll bonded aluminium alloy AA6016, Int. J. Mater. Res. 98 (2007) 320-324.

DOI: 10.3139/146.101469

Google Scholar

[7] R.Z. Valiev, M.J. Zehetbauer, Y. Estrin, H.W. Höppel, Y. Ivanisenko, H. Hahn, G. Wilde, H.J. Roven, X. Sauvage, T.G. Langdon, The innovation potential of bulk nanostructured materials, Adv. Eng. Mater. 9 (2007) 527-533.

DOI: 10.1002/adem.200700078

Google Scholar

[8] I. Topic, H.W. Höppel, D. Staud, M. Merklein, M. Geiger, M. Göken, Formability of Accumulative Roll Bonded Aluminium AA1050 and AA6016 Investigated Using Bulge Tests, Adv. Eng. Mater. 10 (2008) 1101-1109.

DOI: 10.1002/adem.200800167

Google Scholar

[9] I. Topic, H.W. Höppel, M. Göken, Influence of rolling direction on strength and ductility of aluminium and aluminium alloys produced by accumulative roll bonding, J. Mater. Sci. 43 (2008) 7320-7325.

DOI: 10.1007/s10853-008-2754-3

Google Scholar

[10] J. Scharnweber, W. Skrotzki, C.-G. Oertel, H.G. Brokmeier, H.W. Höppel, I. Topic, J. Jaschinski, Texture, Microstructure and Mechanical Properties of Ultrafine Grained Aluminum Produced by Accumulative Roll Bonding, Adv. Eng. Mater. 10 (2010), 989-994

DOI: 10.1002/adem.201000067

Google Scholar

[11] I. Topic, T. Hausöl, U. Vogt, M. Merklein, H.W. Höppel, M. Göken; submitted to Mater. Proc. Tech. (2011)

Google Scholar

[12] M. Merklein, U. Vogt, Enhanced formability of ultrafine-grained aluminum blanks by local heat treatments, Key Eng. Mater. 410-411 (2009) 169-176.

DOI: 10.4028/www.scientific.net/kem.410-411.169

Google Scholar

[13] M. Merklein, M. Biasutti, H. Nguyen, W. Böhm, Flow Behaviour of Advanced Aluminium Materials, in: G. Hirt, E.A. Tekkaya (Eds.), Steel research international: Special Edition: 10th Inter. Conf. on Techn. of Plasticity, Wiley-VCH, Weinheim, 2011, 1066-1071.

Google Scholar

[14] V. Maier, T. Hausöl, C.W. Schmidt, W. Böhm, H. Nguyen, M. Merklein, H.W. Höppel, M. Göken: submitted to Metal. Mater. Trans. A (2011).

Google Scholar

[15] E.O. Hall, The Deformation and Ageing of mild steel: III Discussion of Results, Proc. Physical Soc. B64 (1951) 747-753.

DOI: 10.1088/0370-1301/64/9/303

Google Scholar

[16] N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron and Steel Inst. 174 (1953) 25-28.

Google Scholar

[17] Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals, Mater. Sci. Eng. A 381 (2004) 71-79.

DOI: 10.1016/j.msea.2004.03.064

Google Scholar

[18] J. May, H.W. Höppel, M. Göken, Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation, Scripta Mater. 53 (2005) 189-194.

DOI: 10.1016/j.scriptamat.2005.03.043

Google Scholar