[1]
M.J. Zehetbauer, Y.T. Zhu (Eds.), Bulk Nanostructured Materials, Wiley VCH, Weinheim, 2009.
Google Scholar
[2]
S.H. Whang (Ed.), Nanostructural metals and alloys, Woodhead Publishing Limited, Cambridge, 2011.
Google Scholar
[3]
Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative-roll bonding (ARB) process, Scripta Mater. 39 (1998) 1221-1227.
DOI: 10.1016/s1359-6462(98)00302-9
Google Scholar
[4]
N. Tsuji, Y. Saito, S.H. Lee, Y. Minamino, ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials, Adv. Eng. Mater. 5 (2003) 338-344.
DOI: 10.1002/adem.200310077
Google Scholar
[5]
H.W. Höppel, J. May, M. Göken, Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding, Adv. Eng. Mater. 6 (2004) 781-784.
DOI: 10.1002/adem.200306582
Google Scholar
[6]
I. Topic, H.W. Höppel, M. Göken, Deformation behaviour, microstructure and processing of accumulative roll bonded aluminium alloy AA6016, Int. J. Mater. Res. 98 (2007) 320-324.
DOI: 10.3139/146.101469
Google Scholar
[7]
R.Z. Valiev, M.J. Zehetbauer, Y. Estrin, H.W. Höppel, Y. Ivanisenko, H. Hahn, G. Wilde, H.J. Roven, X. Sauvage, T.G. Langdon, The innovation potential of bulk nanostructured materials, Adv. Eng. Mater. 9 (2007) 527-533.
DOI: 10.1002/adem.200700078
Google Scholar
[8]
I. Topic, H.W. Höppel, D. Staud, M. Merklein, M. Geiger, M. Göken, Formability of Accumulative Roll Bonded Aluminium AA1050 and AA6016 Investigated Using Bulge Tests, Adv. Eng. Mater. 10 (2008) 1101-1109.
DOI: 10.1002/adem.200800167
Google Scholar
[9]
I. Topic, H.W. Höppel, M. Göken, Influence of rolling direction on strength and ductility of aluminium and aluminium alloys produced by accumulative roll bonding, J. Mater. Sci. 43 (2008) 7320-7325.
DOI: 10.1007/s10853-008-2754-3
Google Scholar
[10]
J. Scharnweber, W. Skrotzki, C.-G. Oertel, H.G. Brokmeier, H.W. Höppel, I. Topic, J. Jaschinski, Texture, Microstructure and Mechanical Properties of Ultrafine Grained Aluminum Produced by Accumulative Roll Bonding, Adv. Eng. Mater. 10 (2010), 989-994
DOI: 10.1002/adem.201000067
Google Scholar
[11]
I. Topic, T. Hausöl, U. Vogt, M. Merklein, H.W. Höppel, M. Göken; submitted to Mater. Proc. Tech. (2011)
Google Scholar
[12]
M. Merklein, U. Vogt, Enhanced formability of ultrafine-grained aluminum blanks by local heat treatments, Key Eng. Mater. 410-411 (2009) 169-176.
DOI: 10.4028/www.scientific.net/kem.410-411.169
Google Scholar
[13]
M. Merklein, M. Biasutti, H. Nguyen, W. Böhm, Flow Behaviour of Advanced Aluminium Materials, in: G. Hirt, E.A. Tekkaya (Eds.), Steel research international: Special Edition: 10th Inter. Conf. on Techn. of Plasticity, Wiley-VCH, Weinheim, 2011, 1066-1071.
Google Scholar
[14]
V. Maier, T. Hausöl, C.W. Schmidt, W. Böhm, H. Nguyen, M. Merklein, H.W. Höppel, M. Göken: submitted to Metal. Mater. Trans. A (2011).
Google Scholar
[15]
E.O. Hall, The Deformation and Ageing of mild steel: III Discussion of Results, Proc. Physical Soc. B64 (1951) 747-753.
DOI: 10.1088/0370-1301/64/9/303
Google Scholar
[16]
N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron and Steel Inst. 174 (1953) 25-28.
Google Scholar
[17]
Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals, Mater. Sci. Eng. A 381 (2004) 71-79.
DOI: 10.1016/j.msea.2004.03.064
Google Scholar
[18]
J. May, H.W. Höppel, M. Göken, Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation, Scripta Mater. 53 (2005) 189-194.
DOI: 10.1016/j.scriptamat.2005.03.043
Google Scholar