[1]
R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater Sci Eng R , 50 (2005), 1-78.
Google Scholar
[2]
M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr, A.C. Nunes, Flow patterns during friction stir welding, Materials Charact, 49 (2003), 95-101.
DOI: 10.1016/s1044-5803(02)00362-5
Google Scholar
[3]
V. Balasubramanian, Relationship between base metal properties and friction stir welding process parameters, Mater Sci Eng A, 480 (2008), 397-403.
DOI: 10.1016/j.msea.2007.07.048
Google Scholar
[4]
M.A. Sutton, B. Yang, A.P. Reynolds, R. Taylor, Microstructural studies of friction stir welds in 2024-T3 aluminum, Mater Sci Eng A, 323 (2002), 160-166.
DOI: 10.1016/s0921-5093(01)01358-2
Google Scholar
[5]
A. Barcellona, G. Buffa, L. Fratini, D. Palmeri, On microstructural phenomena occurring in fiction stir welding of aluminium alloys, J Mater Process Tech, 177 (2006), 340-343.
DOI: 10.1016/j.jmatprotec.2006.03.192
Google Scholar
[6]
H.J. Liu, H. Fujii, M. Maeda, K. Nogi, Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy, J Mater Process Tech, 142 (2003), 692-696.
DOI: 10.1016/s0924-0136(03)00806-9
Google Scholar
[7]
J.-Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, Microstructural investigation of fiction stir welded 7050-T651 aluminium, Acta Materialia, 51 (2003), 713-729.
DOI: 10.1016/s1359-6454(02)00449-4
Google Scholar
[8]
A. Abdollah-Zadeh, T. Saeid, B. Sazgari, Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints, Journal of Alloys and Compounds, 460 (2008), 535-538
DOI: 10.1016/j.jallcom.2007.06.009
Google Scholar
[9]
T. Watanabe, H. Takayama, A. Yanagisawa, Joining of aluminum alloy to steel by friction stir welding, J Mater Process Tech, 178 (2006), 342-349.
DOI: 10.1016/j.jmatprotec.2006.04.117
Google Scholar
[10]
R. Citarella, G. Cricrì, A two-parameter model for crack growth simulation by combined FEM-DBEM approach, Adv Eng Softw 40 (2009), 363-373.
DOI: 10.1016/j.advengsoft.2008.05.001
Google Scholar
[11]
G. Bussu, P.E. Irving, The role of residual stress and heat affected zone properties on fatigue propagation in friction stir welded 2024-T351 aluminium joints, Int J Fatigue 25, (2003) 77-88
DOI: 10.1016/s0142-1123(02)00038-5
Google Scholar
[12]
G. Buffa, A. Ducato, L. Fratini, Numerical procedure for residual stress prediction in fiction stir welding, Finite Elem Anal Des, 47 (2011), 470-476.
DOI: 10.1016/j.finel.2010.12.018
Google Scholar
[13]
M. Peel, A. Stewer, M. Preuss, P.J. Withers, Microstructure, mechanical properties and residual stress as a function of welding speed in aluminium AA5083 friction stir welds, Acta Mater, 51 (2003), 4791-4801.
DOI: 10.1016/s1359-6454(03)00319-7
Google Scholar
[14]
W. Xu, J. Liu, H. Zhu, Analysis of residual stresses in thick aluminum friction stir welded butt joints, Mater Design, 32 (2011), 2000-2005.
DOI: 10.1016/j.matdes.2010.11.062
Google Scholar
[15]
M.B. Prime, Cross-sectional mapping of residual stresses by measuring the surface contour after a cut, J Eng Mater Technol, 123 (2001), 162-168.
DOI: 10.1115/1.1345526
Google Scholar