Characterization of a Ceramic Powder Surface by Contact Angle Measurements and Infrared Spectroscopy

Article Preview

Abstract:

The surface chemistry of a suspended particle greatly affects it behavior during electrophoretic deposition. The type and amount of surface groups determines whether the particles can be charged by interaction with the solvent. Furthermore, it is suspected that the surface chemistry plays a prominent role in the mechanisms governing the actual deposition of the particles. In the present work the surface chemistry of as-received and surface modified alumina powder is characterized by means of contact angle measurements and Diffuse Reflectance Infrared Fourier Transform spectroscopy. The wetting is measured using a modified Washburn method which yields quantitative contact angle values. The acid-base and dispersive surface energy components are calculated from these values using the surface tension component theory. Infrared spectroscopy was used to compare the surface groups of the treated and untreated powders and confirm the trends in surface properties as calculated from the contact angles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

233-238

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Anné, K. Vanmeensel, B. Neirinck, O. Van der Biest and J. Vleugels: J. Eur. Ceram. Soc. Vol. 26 (2006), p.3531.

DOI: 10.1016/j.jeurceramsoc.2006.01.019

Google Scholar

[2] M. Lazghab, K. Saleh, I. Pezron, P. Guigon and L. Komunjer: Powder Technol. Vol. 157 (2005), p.79.

DOI: 10.1016/j.powtec.2005.05.014

Google Scholar

[3] R. Mohammadi and A. Amirfazli: J. Disper. Sci. Technol. Vol. 25 (2004), p.567.

Google Scholar

[4] M. Preuss and H. -J. Butt: J. Colloid Interf. Sci. Vol. 208 (1998), p.468.

Google Scholar

[5] C. J. van Oss, M. K. Chaudhury and R. J. Good: Adv. Colloid Interface Sci. Vol. 28 (1987), p.35.

Google Scholar

[6] C. J. van Oss, M. K. Chaudhury and R. J. Good: Chem. Rev. Vol. 88 (1988), p.927.

Google Scholar

[7] B. Neirinck, D. Soccol, J. Fransaer, O. Van der Biest and J. Vleugels: J. Colloid Interface Sci., Accepted Vol. (2010), p.

Google Scholar

[8] B. Siffert, A. Jada and J. E. Letsango: J. Colloid. Interface Sci. Vol. 163 (1994), p.327.

Google Scholar

[9] A. Siebold, A. Walliser, M. Nardin, M. Oppliger and J. Schultz: J. Colloid Interface Sci. Vol. 186 (1997), p.60.

DOI: 10.1006/jcis.1996.4640

Google Scholar

[10] E. Chibowski and R. Perea-Carpio: J. Colloid Interface Sci. Vol. 240 (2001), p.473.

Google Scholar

[11] C. J. van Oss, R. F. Giese and R. J. Good: J. Dispersion Sci. Technol. Vol. 23 (2002), p.455.

Google Scholar

[12] L. H. Lee: Langmuir Vol. 12 (1996), p.1681.

Google Scholar

[13] C. J. van Oss, R. F. Giese, Z. Li, K. Murphy, J. Norris, M. K. Chaudhury and R. J. Good: J. Adhes. Sci. Technol. Vol. 6 (1992), p.413.

Google Scholar

[14] R. C. Plaza, L. Zurita, J. D. G. Duran, F. Gonzalez-Caballero and A. V. Delgado: Langmuir Vol. 14 (1998), p.6850.

Google Scholar