Mechanical and Tribological Properties of Al2O3-ZrO2 Based Composites Prepared by EPD

Article Preview

Abstract:

Alumina and both tetragonal and cubic zirconia based composites with various volume fractions of constituents as well as with addition of carbon nanofibers were prepared by EPD. Mechanical properties (hardness, Youngs modulus) were measured by depth sensing indentation methods and related to chemical composition. Tribological behavior was studied using pin-on-disc technique at room temperatures in air at dry sliding. Coefficient of friction and wear rates were measured, the types of wear regimes were observed and damage micromechanisms identified.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-195

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.G. Evans, A.H. Heuer, Review—transformation toughening in ceramics: martensitic transformations in crack-tip stress fields. J. Am. Ceram. Soc. 63 (1980) 241–248.

DOI: 10.1111/j.1151-2916.1980.tb10712.x

Google Scholar

[2] R.C. Garvie, R.H. Hannink, R.T. Pascoe, Ceramic steel?, Nature 258 (1975) 703–704.

DOI: 10.1038/258703a0

Google Scholar

[3] J. Green, R.H. Hannink, M.V. Swain, Transformation toughening of ceramics, Boca Raton (Florida), CRC Press Inc.; (1989).

Google Scholar

[4] H. Hadraba, K. Maca, J. Cihlář, Electrophoretic deposition of alumina and zirconia – II. Two-component systems, Ceram. Int. 30 (2004) 853-863.

DOI: 10.1016/s0272-8842(03)00208-6

Google Scholar

[5] A.G. Evans, Perspective on the development of high-toughness ceramics, J. Am. Ceram. Soc. 73 (1990) 187-206.

Google Scholar

[6] H. Hadraba, J. Klimeš, K. Maca, Crack propagation in layered Al2O3/ZrO2 composites prepared by electrophoretic deposition, J. Mat. Sci. 42 (2007) 6404-6411.

DOI: 10.1007/s10853-006-1197-y

Google Scholar

[7] H. Hadraba, K. Maca, Z. Chlup, Alumina and zirconia based composites: Part 1 Preparation, Key Eng. Mat. 412 (2009) 221-226.

DOI: 10.4028/www.scientific.net/kem.412.221

Google Scholar

[8] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[9] M. Woydt, J. Kadoori, K. -H. Habig, H. Hausner, Unlubricated sliding behaviour of various zirconia-based ceramics, J. Eur. Ceram. Soc. 7 (1991) 135-145.

DOI: 10.1016/0955-2219(91)90031-t

Google Scholar

[10] P. Hvizdoš, A. Duszová, V. Puchý, O. Tapasztó, P. Kun, J. Dusza, C. Balázsi, Wear behavior of ZrO2-CNF and Si3N4-CNT nanocomposites, Key Eng Mat 465 (2011) 495-498.

DOI: 10.4028/www.scientific.net/kem.465.495

Google Scholar

[11] J. Vleugels, G. Anné, S. Put, O. van Der Biest, Thick Plate-Shaped Al2O3/ZrO2 Composites with Continuous Gradient Processed by Electrophoretic Deposition, Functionally Graded Materials VII, Trans Tech Publications, Switzerland, 2003, 171-176.

DOI: 10.4028/www.scientific.net/msf.423-425.171

Google Scholar

[12] K. Maca, H. Hadraba, J. Cihlář, Electrophoretic deposition of alumina and zirconia – I. Single-component systems, Ceram. Int. 30 (2004) 843-852.

DOI: 10.1016/s0272-8842(03)00209-8

Google Scholar

[13] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mat. Res. 7 (1992), 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar