Electrophoretic Deposition of Cadmium Sulfide Nanoparticles: Electric Field and Particle Size Effects

Article Preview

Abstract:

The present work shows the electric field and particle size effects on the formation of nanostructured arrays by electrophoretic deposition of cadmium sulfide (CdS) nanoparticles. The CdS nanoparticles with mean diameter below 6 nm were prepared by a microwave assisted synthesis. These nanoparticles were aged for one and two weeks at room temperature in order to produce nanoparticle agglomeration. The CdS nanoparticles were deposited on aluminum plates, with 1 cm of distance between them, using a constant applied voltage of 600 and 900 mV for 1 min. The nanostructures formed using CdS nanoparticles freshly prepared under 900 mV show spherical morphology. Under a voltage of 600 mV, nanostructures with elongated morphology were obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-99

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Panigrahi, S. Bhattacharjee, L. Besra, B.P. Singh, S.P. Sinha, Electrophoretic deposition of doped ceria: Effect of solvents on deposition microstructure, Journal of the European Ceramic Society 30 (2010) 1097-1103.

DOI: 10.1016/j.jeurceramsoc.2009.06.038

Google Scholar

[2] S. Bonnas, H.J. Ritzhaupt-Kleissl, J. Haußelt, Fabrication of particle and composition gradients by systematic interaction of sedimentation and electrical field in electrophoretic deposition, Journal of the European Ceramic Society 30 (2010).

DOI: 10.1016/j.jeurceramsoc.2009.08.007

Google Scholar

[3] A.R. Boccaccini, J.A. Roether, B.J.C. Thomas, M.S.P. Shaffer, E. Chavez, E. Stoll, E.J. Minay, The electrophoretic deposition of inorganic nanoscaled materials, Journal of the Ceramic Society of Japan 114 (2006) 1-14.

DOI: 10.2109/jcersj.114.1

Google Scholar

[4] L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science 52 (2007) 1-61.

DOI: 10.1016/j.pmatsci.2006.07.001

Google Scholar

[5] I. Corni, M.P. Ryan, A.R. Boccaccini, Electrophoretic deposition: From traditional ceramics to nanotechnology, Journal of the European Ceramic Society 28(2008) 1353-1367.

DOI: 10.1016/j.jeurceramsoc.2007.12.011

Google Scholar

[6] S. Jia, S. Banerjee, I.P. Herman, Mechanism of the electrophoretic deposition of CdSe nanocrystal films: Influence of the nanocrystal surface and charge; J. Phys. Chem. C 112 (2008) 162-171.

DOI: 10.1021/jp0733320

Google Scholar

[7] S.A. Hasan, D.W. Kavich, S.V. Mahajan, J.H. Dickerson, Electrophoretic deposition of CdSe nanocrystal films onto dielectric polymer thin film, Thin Solid Films 517 (2009) 2665-2669.

DOI: 10.1016/j.tsf.2008.10.122

Google Scholar

[8] L. Xinping, Y. Gao, L. Zheng, Template-free synthesis of CdS hollow nanospheres based on an ionic liquid assisted hydrothermal process and their application in photocatalysis, Journal of Solid State Chemistry 183 (2010) 1423-1432.

DOI: 10.1016/j.jssc.2010.04.001

Google Scholar

[9] H.K. Sadekar, A.V. Ghule, R. Sharma, Bandgap engineering by substitution of S by Se in nanostructured ZnS1−xSex thin films grown by soft chemical route for nontoxic optoelectronic device applications, Journal of Alloys and Compounds 509 (2011).

DOI: 10.1016/j.jallcom.2011.02.089

Google Scholar

[10] L. Luo, H. Chen, L. Zhang, K. Xu, Y. Lv, A cataluminescence gas sensor for carbon tetrachloride based on nanosized ZnS, Analytica Chimica Acta 635 (2009) 183-187.

DOI: 10.1016/j.aca.2009.01.020

Google Scholar

[11] A.A. Yadav, M.A. Barote, E.U. Masumdar, Studies on nanocrystalline cadmium sulphide (CdS) thin films deposited by spray pyrolysis, Solid State Sciences 12 (2010) 1173-1177.

DOI: 10.1016/j.solidstatesciences.2010.04.001

Google Scholar

[12] İ. Şişman, M. Alanyahoğlu, Ü. Demir, Atom-by-atom growth of CdS thin films by an electrochemical co-deposition method: Effects of pH on the growth mechanism and structure, J. Phys. Chem. C 111 (2007) 2670-2674.

DOI: 10.1021/jp066393r

Google Scholar

[13] A. Azam, F. Ahmed, N. Arshi, M. Chaman, A.H. Naqvi, Formation and characterization of ZnO nanopowder synthesized by sol–gel method, Journal of Alloys and Compounds 496 (2010) 399-402.

DOI: 10.1016/j.jallcom.2010.02.028

Google Scholar

[14] M. Lei, X.L. Fu, P.G. Li, W.H. Tang, Growth and photoluminescence of zinc blende ZnS nanowires via metalorganic chemical vapor deposition, Journal of Alloys and Compounds 509( 2011) 5769-5772.

DOI: 10.1016/j.jallcom.2011.02.029

Google Scholar

[15] L. Feng, A. Lu, M. Liu, Y. Ma, J. Wei, B. Man, Fabrication and characterization of tetrapod-like ZnO nanostructures prepared by catalyst-free thermal evaporation, Materials Characterization 61 (2010) 128-133.

DOI: 10.1016/j.matchar.2009.10.011

Google Scholar

[16] L. Jiang, M. Yang, S. Zhu, G. Pang, S. Feng, Phase evolution and morphology control of ZnS in a solvothermal system with a single precursor, J. Phys. Chem. C 112 (2008) 15281-15284.

DOI: 10.1021/jp804705v

Google Scholar

[17] A. Vázquez, J. Aguilar-Garib, I. López, O. Cavazos, I. Gómez, Preparation of ZnS nanoparticles using microwave assisted synthesis: Effects of the irradiation power and the precursors, Rev. Mex. Fís. S 55 (2009) 57-60.

Google Scholar

[18] S. Das, A.K. Mukhopadhyay, S. Datta, D. Basu, Prospects of microwave processing: An overview, Bull. Mater. Sci. 32 (2009) 1-13.

DOI: 10.1007/s12034-009-0001-4

Google Scholar

[19] T. Serrano, I. Gómez, R. Colás, J. Cavazos, Synthesis of CdS nanocrystals stabilized with sodium citrate, Colloids and Surfaces A 338 (2009) 20-24.

DOI: 10.1016/j.colsurfa.2008.12.017

Google Scholar

[20] W.W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater. 15 (2003) 2854-2860.

DOI: 10.1021/cm034081k

Google Scholar