[1]
A.J. Krejci; I. Gonzalo-Juan; J.H. Dickerson, Evolution of Ordering in Iron Oxide Nanoparticle Monolayers Using Electrophoretic Deposition, ACS Appl. Mater. Interfaces 4 (2011) 7367-7372.
DOI: 10.1021/am200830f
Google Scholar
[2]
A. Ahniyaz; Y. Sakamoto; L. Bergstrom, Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 17570-17574.
DOI: 10.1073/pnas.0704210104
Google Scholar
[3]
Y.P. Bao; M. Beerman; K.M. Krishnan, Controlled self-assembly of colloidal cobalt nanocrystals mediated by magnetic interactions, J. Magn. Magn. Mater. 272 (2004) E1367-E1368.
DOI: 10.1016/j.jmmm.2003.12.219
Google Scholar
[4]
C.Y. Jiang; V.V. Tsukruk, Freestanding nanostructures via layer-by-layer assembly, Adv. Mater. 18 (2006) 829-840.
DOI: 10.1002/adma.200502444
Google Scholar
[5]
F. Kim; S. Kwan; J. Akana; P.D. Yang, Langmuir-Blodgett nanorod assembly, J. Am. Chem. Soc. 123 (2001) 4360-4361.
DOI: 10.1021/ja0059138
Google Scholar
[6]
X.M. Lin; H.M. Jaeger; C.M. Sorensen; K.J. Klabunde, Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates, J. Phys. Chem. B 105 (2001) 3353-3357.
DOI: 10.1021/jp0102062
Google Scholar
[7]
C. Salzemann; J. Richardi; I. Lisiecki; J.J. Weis; M.P. Pileni, Mesoscopic Void Structures in Cobalt Nanocrystal Films Formed from Drying Concentrated Colloidal Solutions, Phys. Rev. Lett. 102 (2009).
DOI: 10.1103/physrevlett.102.144502
Google Scholar
[8]
E.V. Shevchenko; D.V. Talapin; N.A. Kotov; S. O'Brien; C.B. Murray, Structural diversity in binary nanoparticle superlattices, Nature 439 (2006) 55-59.
DOI: 10.1038/nature04414
Google Scholar
[9]
D.V. Talapin; E.V. Shevchenko; C.B. Murray; A.V. Titov; P. Kral, Dipole-dipole interactions in nanoparticle superlattices, Nano Lett. 7 (2007) 1213-1219.
DOI: 10.1021/nl070058c
Google Scholar
[10]
P.J. Thomas; G.U. Kulkarni; C.N.R. Rao, An investigation of two-dimensional arrays of thiolized Pd nanocrystals, J. Phys. Chem. B 104 (2000) 8138-8144.
DOI: 10.1021/jp001242o
Google Scholar
[11]
T. Trindade; P. O'Brien; N.L. Pickett, Nanocrystalline semiconductors: Synthesis, properties, and perspectives, Chem. Mater. 13 (2001) 3843-3858.
DOI: 10.1021/cm000843p
Google Scholar
[12]
S.H. Sun; C.B. Murray; D. Weller; L. Folks; A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287 (2000) 1989-(1992).
DOI: 10.1126/science.287.5460.1989
Google Scholar
[13]
D.V. Talapin; J.S. Lee; M.V. Kovalenko; E.V. Shevchenko, Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications, Chem. Rev. 110 (2010) 389-458.
DOI: 10.1021/cr900137k
Google Scholar
[14]
R.G. Freeman; K.C. Grabar; K.J. Allison; R.M. Bright; J.A. Davis; A.P. Guthrie; M.B. Hommer; M.A. Jackson; P.C. Smith; D.G. Walter; M.J. Natan, Self-Assembled Metal Colloid Monolayers - An Approach to SERS Substrates, Science 267 (1995).
DOI: 10.1126/science.267.5204.1629
Google Scholar
[15]
T. Okamoto; I. Yamaguchi; T. Kobayashi, Local plasmon sensor with gold colloid monolayers deposited upon glass substrates, Opt. Lett. 25 (2000) 372-374.
DOI: 10.1364/ol.25.000372
Google Scholar
[16]
S.A. Maier; P.G. Kik; H.A. Atwater; S. Meltzer; E. Harel; B.E. Koel; A.A.G. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nature Mater. 2 (2003) 229-232.
DOI: 10.1038/nmat852
Google Scholar
[17]
C.T. Black; C.B. Murray; R.L. Sandstrom; S.H. Sun, Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices, Science 290 (2000) 1131-1134.
DOI: 10.1126/science.290.5494.1131
Google Scholar
[18]
J. Kim; Y. Lee; S. Sun, Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction, J. Am. Chem. Soc. 132 (2010) 4996-+.
DOI: 10.1021/ja1009629
Google Scholar
[19]
Y. Tamada; S. Yamamoto; S. Nasu; T. Ono, Structural and magnetic properties of L1(0)-FePt nanoparticles aligned by external magnetic field, Phys. Rev. B 78 (2008).
DOI: 10.1103/physrevb.78.214428
Google Scholar
[20]
S. Coe; W.K. Woo; M. Bawendi; V. Bulovic, Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature 420 (2002) 800-803.
DOI: 10.1038/nature01217
Google Scholar
[21]
S.V. Mahajan; S.A. Hasan; J. Cho; M.S.P. Shaffer; A.R. Boccaccini; J.H. Dickerson, Carbon nanotube-nanocrystal heterostructures fabricated by electrophoretic deposition, Nanotech. 19 (2008).
DOI: 10.1088/0957-4484/19/19/195301
Google Scholar
[22]
D.W. Kavich; J.H. Dickerson; S.V. Mahajan; S.A. Hasan; J.H. Park, Exchange bias of singly inverted FeO/Fe3O4 core-shell nanocrystals, Phys. Rev. B 78 (2008).
DOI: 10.1103/physrevb.78.174414
Google Scholar
[23]
D.W. Kavich; S.A. Hasan; S.V. Mahajan; J.H. Park; J.H. Dickerson, Field Dependence of the Spin Relaxation Within a Film of Iron Oxide Nanocrystals Formed via Electrophoretic Deposition, Nano. Res. Lett. 5 (2010) 1540-1545.
DOI: 10.1007/s11671-010-9674-2
Google Scholar
[24]
J. Park; K.J. An; Y.S. Hwang; J.G. Park; H.J. Noh; J.Y. Kim; J.H. Park; N.M. Hwang; T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals, Nature Mater. 3 (2004) 891-895.
DOI: 10.1038/nmat1251
Google Scholar