Current Measurements as a Direct Diagnostic for Sub-Monolayer Growth of Nanoparticle Films in Non-Polar Electrophoretic Deposition

Article Preview

Abstract:

Electrophoretic current densities and nanoparticle densities were measured during and after the electrophoretic deposition of iron oxide nanoparticles and were compared to infer the relationship between the quantity of deposited nanoparticles and the measured current. This information led to an assessment of the primary contributors to the measured current during non-polar solvent-based electrophoretic deposition. Such information was employed to monitor and to control sub-monolayer growth of nanoparticle films. Subsequently, the average charge magnitude of each suspended colloidal nanoparticle was calculated to be ±3.2 ± 0.3 electron charges.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-83

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.J. Krejci; I. Gonzalo-Juan; J.H. Dickerson, Evolution of Ordering in Iron Oxide Nanoparticle Monolayers Using Electrophoretic Deposition, ACS Appl. Mater. Interfaces 4 (2011) 7367-7372.

DOI: 10.1021/am200830f

Google Scholar

[2] A. Ahniyaz; Y. Sakamoto; L. Bergstrom, Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 17570-17574.

DOI: 10.1073/pnas.0704210104

Google Scholar

[3] Y.P. Bao; M. Beerman; K.M. Krishnan, Controlled self-assembly of colloidal cobalt nanocrystals mediated by magnetic interactions, J. Magn. Magn. Mater. 272 (2004) E1367-E1368.

DOI: 10.1016/j.jmmm.2003.12.219

Google Scholar

[4] C.Y. Jiang; V.V. Tsukruk, Freestanding nanostructures via layer-by-layer assembly, Adv. Mater. 18 (2006) 829-840.

DOI: 10.1002/adma.200502444

Google Scholar

[5] F. Kim; S. Kwan; J. Akana; P.D. Yang, Langmuir-Blodgett nanorod assembly, J. Am. Chem. Soc. 123 (2001) 4360-4361.

DOI: 10.1021/ja0059138

Google Scholar

[6] X.M. Lin; H.M. Jaeger; C.M. Sorensen; K.J. Klabunde, Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates, J. Phys. Chem. B 105 (2001) 3353-3357.

DOI: 10.1021/jp0102062

Google Scholar

[7] C. Salzemann; J. Richardi; I. Lisiecki; J.J. Weis; M.P. Pileni, Mesoscopic Void Structures in Cobalt Nanocrystal Films Formed from Drying Concentrated Colloidal Solutions, Phys. Rev. Lett. 102 (2009).

DOI: 10.1103/physrevlett.102.144502

Google Scholar

[8] E.V. Shevchenko; D.V. Talapin; N.A. Kotov; S. O'Brien; C.B. Murray, Structural diversity in binary nanoparticle superlattices, Nature 439 (2006) 55-59.

DOI: 10.1038/nature04414

Google Scholar

[9] D.V. Talapin; E.V. Shevchenko; C.B. Murray; A.V. Titov; P. Kral, Dipole-dipole interactions in nanoparticle superlattices, Nano Lett. 7 (2007) 1213-1219.

DOI: 10.1021/nl070058c

Google Scholar

[10] P.J. Thomas; G.U. Kulkarni; C.N.R. Rao, An investigation of two-dimensional arrays of thiolized Pd nanocrystals, J. Phys. Chem. B 104 (2000) 8138-8144.

DOI: 10.1021/jp001242o

Google Scholar

[11] T. Trindade; P. O'Brien; N.L. Pickett, Nanocrystalline semiconductors: Synthesis, properties, and perspectives, Chem. Mater. 13 (2001) 3843-3858.

DOI: 10.1021/cm000843p

Google Scholar

[12] S.H. Sun; C.B. Murray; D. Weller; L. Folks; A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287 (2000) 1989-(1992).

DOI: 10.1126/science.287.5460.1989

Google Scholar

[13] D.V. Talapin; J.S. Lee; M.V. Kovalenko; E.V. Shevchenko, Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications, Chem. Rev. 110 (2010) 389-458.

DOI: 10.1021/cr900137k

Google Scholar

[14] R.G. Freeman; K.C. Grabar; K.J. Allison; R.M. Bright; J.A. Davis; A.P. Guthrie; M.B. Hommer; M.A. Jackson; P.C. Smith; D.G. Walter; M.J. Natan, Self-Assembled Metal Colloid Monolayers - An Approach to SERS Substrates, Science 267 (1995).

DOI: 10.1126/science.267.5204.1629

Google Scholar

[15] T. Okamoto; I. Yamaguchi; T. Kobayashi, Local plasmon sensor with gold colloid monolayers deposited upon glass substrates, Opt. Lett. 25 (2000) 372-374.

DOI: 10.1364/ol.25.000372

Google Scholar

[16] S.A. Maier; P.G. Kik; H.A. Atwater; S. Meltzer; E. Harel; B.E. Koel; A.A.G. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nature Mater. 2 (2003) 229-232.

DOI: 10.1038/nmat852

Google Scholar

[17] C.T. Black; C.B. Murray; R.L. Sandstrom; S.H. Sun, Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices, Science 290 (2000) 1131-1134.

DOI: 10.1126/science.290.5494.1131

Google Scholar

[18] J. Kim; Y. Lee; S. Sun, Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction, J. Am. Chem. Soc. 132 (2010) 4996-+.

DOI: 10.1021/ja1009629

Google Scholar

[19] Y. Tamada; S. Yamamoto; S. Nasu; T. Ono, Structural and magnetic properties of L1(0)-FePt nanoparticles aligned by external magnetic field, Phys. Rev. B 78 (2008).

DOI: 10.1103/physrevb.78.214428

Google Scholar

[20] S. Coe; W.K. Woo; M. Bawendi; V. Bulovic, Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature 420 (2002) 800-803.

DOI: 10.1038/nature01217

Google Scholar

[21] S.V. Mahajan; S.A. Hasan; J. Cho; M.S.P. Shaffer; A.R. Boccaccini; J.H. Dickerson, Carbon nanotube-nanocrystal heterostructures fabricated by electrophoretic deposition, Nanotech. 19 (2008).

DOI: 10.1088/0957-4484/19/19/195301

Google Scholar

[22] D.W. Kavich; J.H. Dickerson; S.V. Mahajan; S.A. Hasan; J.H. Park, Exchange bias of singly inverted FeO/Fe3O4 core-shell nanocrystals, Phys. Rev. B 78 (2008).

DOI: 10.1103/physrevb.78.174414

Google Scholar

[23] D.W. Kavich; S.A. Hasan; S.V. Mahajan; J.H. Park; J.H. Dickerson, Field Dependence of the Spin Relaxation Within a Film of Iron Oxide Nanocrystals Formed via Electrophoretic Deposition, Nano. Res. Lett. 5 (2010) 1540-1545.

DOI: 10.1007/s11671-010-9674-2

Google Scholar

[24] J. Park; K.J. An; Y.S. Hwang; J.G. Park; H.J. Noh; J.Y. Kim; J.H. Park; N.M. Hwang; T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals, Nature Mater. 3 (2004) 891-895.

DOI: 10.1038/nmat1251

Google Scholar