High Voltage Electrophoretic Deposition of Aligned Nanoforests for Scalable Nanomanufacturing of Electrochemical Energy Storage Devices

Article Preview

Abstract:

High voltage electrophoretic deposition (HVEPD) has been used to obtain forests of aligned multi-walled carbon nanotubes (MWCNTs) on long strips of flexible, conductive substrates. Successful design and integration of a continuous HVEPD setup has enabled scalable fabrication of electrodes for electrochemical energy storage. The mechanism of continuous HVEPD has been investigated to ensure appropriate alignment. Well-aligned forests of MWCNTs were obtained using a conductive holding layer which helped reduce internal resistance and enhance the electrochemical performance of the electrodes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-72

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Liu, G. Cao, Z. Yang, D. Wang, D. Dubois, X. Z. G. L. Graff, L. R. Pederson, and J. -G. Zhang, Oriented Nanostructures for Energy Conversion and Storage, ChemSusChem, vol. 1, pp.676-697, (2008).

DOI: 10.1002/cssc.200800087

Google Scholar

[2] L. Dai, A. Patil, X. Gong, Z. Guo, L. Liu, Y. Liu, and D. Zhu, Aligned Nanotubes, ChemPhysChem, vol. 4, pp.1150-1169, (2003).

DOI: 10.1002/cphc.200300770

Google Scholar

[3] A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes, and M. L. Simpson, Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly, J. Appl. Phys., vol. 97, pp.041301-39, (2005).

DOI: 10.1063/1.1857591

Google Scholar

[4] H. Zhang, G. Cao, Y. Yang, and Z. Gu, Comparison Between Electrochemical Properties of Aligned Carbon Nanotube Array and Entangled Carbon Nanotube Electrodes, J. Electrochem. Soc., vol. 155, pp. K19-K22, (2008).

DOI: 10.1149/1.2811864

Google Scholar

[5] S. Santhanagopalan, F. Teng, and D. D. Meng, High-Voltage Electrophoretic Deposition for Vertically Aligned Forests of One-Dimensional Nanoparticles, Langmuir, vol. 27, pp.561-569, 2011/01/18 (2010).

DOI: 10.1021/la103587b

Google Scholar

[6] D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, and S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat. Mater., vol. 5, pp.987-994, (2006).

DOI: 10.1038/nmat1782

Google Scholar

[7] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Large-Scale Synthesis of Aligned Carbon Nanotubes, Science, vol. 274, pp.1701-1703, December 6, 1996 (1996).

DOI: 10.1126/science.274.5293.1701

Google Scholar

[8] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass, Science, vol. 282, pp.1105-1107, November 6, 1998 (1998).

DOI: 10.1126/science.282.5391.1105

Google Scholar

[9] V. Bajpai, L. Dai, and T. Ohashi, Large-Scale Synthesis of Perpendicularly Aligned Helical Carbon Nanotubes, Journal of the American Chemical Society, vol. 126, pp.5070-5071, 2004/04/01 (2004).

DOI: 10.1021/ja031738u

Google Scholar

[10] G. D. Nessim, M. Seita, K. P. O'Brien, A. J. Hart, R. K. Bonaparte, R. R. Mitchell, and C. V. Thompson, Low Temperature Synthesis of Vertically Aligned Carbon Nanotubes with Electrical Contact to Metallic Substrates Enabled by Thermal Decomposition of the Carbon Feedstock, Nano Lett., vol. 9, pp.3398-3405, (2009).

DOI: 10.1021/nl900675d

Google Scholar

[11] Z. Liu, Z. Shen, T. Zhu, S. Hou, L. Ying, Z. Shi, and Z. Gu, Organizing Single-Walled Carbon Nanotubes on Gold Using a Wet Chemical Self-Assembling Technique, Langmuir, vol. 16, pp.3569-3573, (2000).

DOI: 10.1021/la9914110

Google Scholar

[12] S. C. Youn, D. -H. Jung, Y. K. Ko, Y. W. Jin, J. M. Kim, and H. -T. Jung, Vertical Alignment of Carbon Nanotubes Using the Magneto-Evaporation Method, J. Am. Chem. Soc., vol. 131, pp.742-748, (2008).

DOI: 10.1021/ja8073209

Google Scholar

[13] Y. -T. Liu, X. -M. Xie, Y. -F. Gao, Q. -P. Feng, L. -R. Guo, X. -H. Wang, and X. -Y. Ye, Polymer-assisted assembly of carbon nanotubes via a template-based method, Carbon, vol. 44, pp.599-602, (2006).

DOI: 10.1016/j.carbon.2005.09.033

Google Scholar

[14] L. Besra and M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science, vol. 52, pp.1-61, (2007).

DOI: 10.1016/j.pmatsci.2006.07.001

Google Scholar

[15] A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E. Jane Minay, and M. S. P. Shaffer, Electrophoretic deposition of carbon nanotubes, Carbon, vol. 44, pp.3149-3160, (2006).

DOI: 10.1016/j.carbon.2006.06.021

Google Scholar

[16] P. Sarkar and P. S. Nicholson, Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics, Journal of the American Ceramic Society, vol. 79, pp.1987-2002, (1996).

DOI: 10.1111/j.1151-2916.1996.tb08929.x

Google Scholar

[17] P. V. Kamat, K. G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, and D. Meisel, Self-Assembled Linear Bundles of Single Wall Carbon Nanotubes and Their Alignment and Deposition as a Film in a dc Field, J. Am. Chem. Soc., vol. 126, pp.10757-10762, (2004).

DOI: 10.1021/ja0479888

Google Scholar

[18] S. P. Han and S. -M. Yang, Orientation Distribution and Electrophoretic Motions of Rod-like Particles in a Capillary, J. Colloid Interface Sci., vol. 177, pp.132-142, (1996).

DOI: 10.1006/jcis.1996.0013

Google Scholar

[19] J. Cho, K. Konopka, K. Rozniatowski, E. García-Lecina, M. S. P. Shaffer, and A. R. Boccaccini, Characterisation of carbon nanotube films deposited by electrophoretic deposition, Carbon, vol. 47, pp.58-67, (2009).

DOI: 10.1016/j.carbon.2008.08.028

Google Scholar

[20] C. Kleinstreuer, Modern fluid dynamics: basic theory and selected applications in macro- and micro-fluidics vol. 87: Springer (2010).

DOI: 10.1007/978-1-4020-8670-0

Google Scholar