AC Electrophoresis, a New Technique for Deposition of Ceramic Nanoparticles; Introduction, Application and Mechanism

Article Preview

Abstract:

Deposition of ceramic nanoparticles (dispersed in non-aqueous suspension) on in-plane electrodes and under the influence of AC electric fields in the frequency range of 0.01 Hz - 10 kHz is investigated. Analysis of the particle response to the applied field is a difficult task due to the mutual effect of electric and hydrodynamic forces which are present in the system. In this work, however, we show the possibility of dividing the frequency range into four domains with four distinct governing mechanisms. Possible mechanisms are suggested and dominant forces are determined for each domain. In situ optical microscopy observations are used for visualization of nanoparticles´ movement dispersed in liquid medium. These observations show that applying AC electrophoresis at frequencies below 10 kHz is an effective way for manipulating ceramic nanoparticles and device fabrication.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-45

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Hirata, A. Nishimoto and Y. Ishihara, Forming of Alumina Powder by Electrophoretic Deposition, J. Ceram. Soc. Jpn. 99 (1991) 108-113.

DOI: 10.2109/jcersj.99.108

Google Scholar

[2] M. N. Naim, M. Kuwata, H, Kamiya and W. Lenggoro, Deposition of TiO2 Nanoparticles in Surfactant-Containing Aqueous Suspension by a Pulsed DC Charging-Mode Electrophoresis, J. Ceram. Soc. Jpn. 117 (2009) 127-132.

DOI: 10.2109/jcersj2.117.127

Google Scholar

[3] B. Neirinck, J. Fransaer, O. Van der Biest and J. Vleugels, Aqueous Electrophoretic Deposition in Asymmetric AC Electric Fields (AC-EPD), Electrochem. Commun. 11 (2009) 57-60.

DOI: 10.1016/j.elecom.2008.10.028

Google Scholar

[4] A. R. Gardeshzadeh, B. Raissi, E. Marzbanrad, Preparation of Si powder thick films by low frequency alternating electrophoretic deposition, J. Mater. Sci. 43 (2008) 2507-2508.

DOI: 10.1007/s10853-008-2519-z

Google Scholar

[5] A. R. Gardeshzadeh, B. Raissi, E. Marzbanrad and H. Mohebbi, Fabrication of Resistive CO Gas Sensor Based on SnO2 Nanopowders Via Low Frequency AC Electrophoretic Deposition, J. Mater. Sci.: Mater. Electron. 20 (2009) 127-131.

DOI: 10.1007/s10854-008-9652-y

Google Scholar

[6] R. Riahifar, E. Marzbanrad, B. Raissi and C. Zamani, A new technique for micro-patterning of nanoparticles on non-conductive substrate by low frequency AC electrophoresis, J. Mater. Sci.: Mater. Electron. 22 (2011) 1218-1221.

DOI: 10.1007/s10854-011-0288-y

Google Scholar

[7] R. Riahifar, E. Marzbanrad, B. Raissi, C. Zamani, M. Kazemzad and A. Aghaie, Sorting ZnO particles of different shapes with low frequency AC electric field, Mat. Lett. 65 (2011) 632-635.

DOI: 10.1016/j.matlet.2010.08.029

Google Scholar

[8] B. Raissi, E. Marzbanrad and A. R. Gardeshzadeh, Particle Size Separation by Alternating Electrophoretic Deposition, J. Eur. Ceram. Soc. 29 (2009) 3289–3291.

DOI: 10.1016/j.jeurceramsoc.2009.05.028

Google Scholar

[9] R. Riahifar, E. Marzbanrad, B. Raissi and C. Zamani, Effect of parameters on deposition pattern of ceramic nanoparticles in non-uniform AC electric field, J. Mater Sci.: Mater Electron, 22 (2011) 40-46.

DOI: 10.1007/s10854-010-0079-x

Google Scholar

[10] A. Ramos, H. Morgan, N. G. Green and A. Castellanos, AC Electric-Field-Induced Fluid Flow in Microelectrodes, J. Colloid Interface Sci. 217 (1999) 420–422.

DOI: 10.1006/jcis.1999.6346

Google Scholar

[11] A. Y. Sinyagin, A. Belov, Z. Tang and N. A. Kotov, Monte carlo computer simulation of chain formation from nanoparticles, J. Pys. Chem. B. 110 (2006) 7500-7507.

DOI: 10.1021/jp057105e

Google Scholar

[12] E. k. Heidari, C. Zamani, E. Marzbanrad, B. Raissi, S. Nazarpour, WO3-based NO2 sensors fabricated through low frequency AC electrophoretc deposition, Sens. Actuators, B. 146 (2010) 165-170.

DOI: 10.1016/j.snb.2010.01.073

Google Scholar