Densification of ATO Nanoceramics by Spark Plasma Sintering

Article Preview

Abstract:

High Density Antimony-Doped Tin Oxide (ATO) Ceramic Targets Are the Crucial Materials for Preparation of High Quality Transparent Conductive ATO Thin Films in Sputtering Process. In the Present Work, ATO Nanopowders with Different Sb2O3 Doping Content (0~10 mol%) Were Used to Fabricate the ATO Nanoceramics by Spark Plasma Sintering (SPS) Technique, which Can Reduce the Densification Temperature and Restrain a Grain Growth. And the Effect of Sb2O3 Doping Content (0~10 mol%) on the Density and Microstructure Had Been Investigated. the Results Showed that with the Sb2o3 Doping Content Increase, the Relative Density of ATO Nanoceramics Is Increased and the Resistivity Is Decreased. When the Sb2O3 Doping Content Is 10 mol%, the Relative Density Is 97.2% and the Resistivity Is 7.9×10-2 Ω•cm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

230-234

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ravichandran, P. Philominathan, Materials Letters. 62 (2008) 2980-2983.

Google Scholar

[2] L. K. Dua, A. De, S. Chakraborty, P. K. Biswas, Materials Characterization. 59 (2008) 578-586.

Google Scholar

[3] B. Yoo, K. Kim, S. H. Lee, W. M. Kim, N. -G. Park, Solar Energy Materials & Solar Cells. 92 (2008) 873-877.

DOI: 10.1016/j.solmat.2008.02.013

Google Scholar

[4] M. Seo, Y. Akutsu, H. Kagemoto, Ceramics International. 33 (2007) 625-629.

Google Scholar

[5] J. Boltz, D. Koehl, M. Wuttig, Surface & Coating Technology. 205 (2010) 2455-2460.

Google Scholar

[6] E. Medvedovski, N. Alvarez, O. Yankov, M. K. Olsson, Ceramics International. 34 (2008) 1173-1182.

DOI: 10.1016/j.ceramint.2007.02.015

Google Scholar

[7] L. M. Zhang, G. Q. Luo, J. Li, D. M. Zhang, Q. Shen, Key Engineering Materials. 352 (2007) 263-266.

Google Scholar

[8] M. S. Castro, C. M. Aldao, Journal of the European Ceramic Society. 18 (1998) 2233-2239.

Google Scholar

[9] W. -J. Park, W. Jo, D. -Y. Kim, Journal of Materials Science. 40 (2005) 3825-3827.

Google Scholar

[10] I. Saadeddin, B. Pecquenard, J. P. Manaud, Applied Surface Science. 253 (2007) 5240-5249.

Google Scholar

[11] D. Nisiro, G. Fabbri, G. C. Celotti, A. Bellosi, Journal of Materials Science. 38 (2003) 2727-2742.

DOI: 10.1023/a:1024459307992

Google Scholar

[12] Y. Q. Li, J. L. Wang, S. Y. Fu, Materials Research Bulletin. 45 (2010) 677-681.

Google Scholar

[13] O. Scarlat, S. Mihaiu, G. Aldica, J. Groza, M. Zaharescu, Journal of the European Ceramic Society. 24 (2004) 1049-1052.

DOI: 10.1016/s0955-2219(03)00387-x

Google Scholar

[14] H. Kim, A. Pique, Applied Physics Letters. 84 (2004) 218-220.

Google Scholar