Optical Conductivity of Rattling Phonons in Type-I Clathrates Ba8Ga16Ge30 and Ba8Ga16Sn30

Article Preview

Abstract:

We Review Our Dynamical Property Measurements of Rattling Phonons in Type-I Clathrate Compounds, the Quasi-on-Center Ba8Ga16Ge30 (BGG) and Off-Center Ba8Ga16Sn30 (BGS), Using a Terahertz Time-Domain Spectrometer. The Lowest-Lying Vibrational Modes of Rattling Ba Ions in the Oversized Cage Show Anomalous Temperature Dependence in their Spectra. For BGG, the Temperature Dependence Is Mostly Consistent with a Local Anharmonic Potential Approximation that Predicts Softening towards Low Temperature. On the other Hand, for BGS, a Single Broad Peak of Off-Center Rattling Phonons Splits into Two Subpeaks below 120 K, and, with Further Lowering Temperature, the Spectra Show Anomalous Broadening. While the Splitting Can Be Understood by the Double Well Potential, the Linewidth Broadening Must Be Attributed to some Relevant Interactions with such Excitations as Acoustic Phonons and Doped Carriers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

341-346

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. A. Slack, in Thermoelectric Handbook, edited by D. M. Rowe (CRC, Boca Raton, 1995), p.407–440.

Google Scholar

[2] G. S. Nolas, J. L. Cohn, G. A. Slack and S. B. Schujman, Appl. Phys. Lett. 73, 179, (1998).

Google Scholar

[3] J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf, and G. A. Slack, Phys. Rev. Lett., 82, 779, (1999).

DOI: 10.1103/physrevlett.82.779

Google Scholar

[4] B. C. Sales, B. C. Chakoumakos, R. Jin, J. R. Thompson, and D. Mandrus, Phys. Rev. B, 63, 245113, (2001).

Google Scholar

[5] A. Bentien, M. Christensen, J. D. Bryan, A. Sanchez, S. Paschen, F. Steglich, G. D. Stucky, and B. B. Iversen, Phys. Rev. B, 69, 045107, (2004).

DOI: 10.1103/physrevb.69.045107

Google Scholar

[6] A. Bentien, V. Pacheco, S. Paschen, Y. Grin, and F. Steglich. Phys. Rev. B, 71, 165206, (2005).

Google Scholar

[7] K. Suekuni, M. A. Avila, K. Umeo, and T. Takabatake. Phys. Rev. B, 75, 195210, (2007).

Google Scholar

[8] M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, Appl. Phys. Lett., 92, 041901 (2008).

DOI: 10.1063/1.2831926

Google Scholar

[9] K. Suekuni, M. A. Avila, K. Umeo, H. Fukuoka, S. Yamanaka, T. Nakagawa, and T. Takabatake, Phys. Rev. B, 77, 235119 (2008).

Google Scholar

[10] R. C. Zellar and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).

Google Scholar

[11] J. S. Kasper, P. Hagenmuller, M. Pouchard, and C. Cros, Science, 150, 1713 (1965).

Google Scholar

[12] M. Christensen, N. Lock, J. Overgaard, and B. B. Iversen, J. Am. Chem. Soc., 128, 15657, (2006).

Google Scholar

[13] M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Lefmann, J. Andreasson, C. R. H. Bahl, and B. B. Iversen, Nat. Mater., 7, 811, (2008).

DOI: 10.1038/nmat2273

Google Scholar

[14] Y. Takasu, T. Hasegawa, N. Ogita, M. Udagawa, M. A. Avila, K. Suekuni, I. Ishii, T. Suzuki, and T. Takabatake, Phys. Rev. B, 74, 174303, (2006).

Google Scholar

[15] K. Suekuni, Y. Takasu, T. Hasegawa, N. Ogita, M. Udagawa, M. A. Avila, and T. Takabatake, Phys. Rev. B, 81, 205207, (2010).

Google Scholar

[16] Y. Takasu, T. Hasegawa, N. Ogita, M. Udagawa, M. A. Avila, K. Suekuni, and T. Takabatake. Phys. Rev. B, 82, 134302, (2010).

Google Scholar

[17] T. Mori, S. Goshima, K. Iwamoto, S. Kushibiki, H. Matsumoto, N. Toyota, K. Suekuni, M. A. Avila, T. Takabatake, T. Hasegawa, N. Ogita, and M. Udagawa, Phys. Rev. B, 79, 212301, (2009).

DOI: 10.1103/physrevb.79.212301

Google Scholar

[18] T. Mori, K. Iwamoto, S. Kushibiki, H. Honda, H. Matsumoto, N. Toyota, M. A. Avila, K. Suekuni, and T. Takabatake, Phys. Rev. Lett., 106, 015501, (2011).

Google Scholar

[19] H. Matsumoto, T. Mori, K. Iwamoto, S. Goshima, S. Kushibiki, and N. Toyota, Phys. Rev. B, 79, 214306, (2009).

Google Scholar