[1]
A. Tuteja, W. Choi, M. L. Ma, et al, Designing superoleophobic surfaces, Science 318 (2007) 1618-1622.
Google Scholar
[2]
X. F. Gao, L. Jiang, Water-repellent legs of water striders, Nature 432 (2004) 36-36.
DOI: 10.1038/432036a
Google Scholar
[3]
M. Callies, D. Quéré, On water repellency, Soft Matter 1 (2005) 55-61.
Google Scholar
[4]
T. L. Sun, L. Feng, X. F. Gao, et al., Bioinspired surfaces with special wettability, Acc. Chem. Res. 38 (2005) 644-652.
DOI: 10.1021/ar040224c
Google Scholar
[5]
M. Nosonovsky and B. Bhushan, Biologically inspired surfaces: Broadening the scope of roughness, Adv. Funct. Mater. 18 (2008) 843-855.
DOI: 10.1002/adfm.200701195
Google Scholar
[6]
X. Zhang, F. Shi, J. Niu, et al., Superhydrophobic surfaces: from structural control to functional application, J. Mater. Chem. 18 (2008) 621-633.
DOI: 10.1039/b711226b
Google Scholar
[7]
S. S. Wang, L. Feng, L.Jiang, One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces, Adv. Mater. 18 (2006) 767-770.
DOI: 10.1002/adma.200501794
Google Scholar
[8]
H. Wu, R. Zhang, Y. Sun, et al., Biomimetic nanofiber patterns with controlled wettability, Soft Matter 4 (2008) 2429-2433.
DOI: 10.1039/b805570j
Google Scholar
[9]
B. Xu, Z. S. Cai, Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification, Appl. Surf. Sci. 254 (2008) 5899-5904.
DOI: 10.1016/j.apsusc.2008.03.160
Google Scholar
[10]
M. Nicolas, F. Guittard, S. Gribaldi, Synthesis of stable super water- and oil-repellent polythiophene films, Angew. Chem. Int. Ed. 45 (2006) 2251-2254.
DOI: 10.1002/anie.200503892
Google Scholar
[11]
X. Zhang, F. Shi, X. Yu, et al., Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: Toward superhydrophobic surface, J. Am. Chem. Soc. 126 (2004) 3064-3065.
DOI: 10.1021/ja0398722
Google Scholar
[12]
L. H. Kong, X. H. Chen, G. B. Yang, et al., Preparation and characterization of slice-like Cu2(OH)3NO3 superhydrophobic structure on copper foil, Appl. Surf. Sci., 254 (2008) 7255-7258.
DOI: 10.1016/j.apsusc.2008.05.317
Google Scholar
[13]
B. T. Qian, Z. Q. Shen, Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates, Langmuir 21 (2005) 9007-9009.
DOI: 10.1021/la051308c
Google Scholar
[14]
J. H. Huang, Z. E. Tsai and G. P. Yu, Mechanical properties and corrosion resistance of nanocrystalline ZrNxOy coatings on AISI 304 stainless steel by ion plating, Surf. Coat. Technol. 202 (2008) 4992-5000.
DOI: 10.1016/j.surfcoat.2008.05.001
Google Scholar
[15]
G. X. Shen, Y. C. Chen, C. J. Lin, Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method, Thin Solid Films 489 (2005) 130-136.
DOI: 10.1016/j.tsf.2005.05.016
Google Scholar
[16]
H. Yun, J. Li, H. B. Chen, et al., A study on the N-, S- and Cl-modified nano-TiO2 coatings for corrosion protection of stainless steel, Electrochim. Acta 52 (2007) 6679-6685.
DOI: 10.1016/j.electacta.2007.04.078
Google Scholar
[17]
G. McHale, Cassie and wenzel: Were they really so wrong?, Langmuir 23 (2007) 8200-8205.
DOI: 10.1021/la7011167
Google Scholar