The Effect of Sintering Temperature on Microstructure and Electrocatalytic Capability of RuO2-IrO2-TiO2/Ti Anode

Article Preview

Abstract:

The anodes of RuO2-IrO2-TiO2/Ti were prepared by Pechini method. The surface morphology and electrocatalytic capability of anodes were studied by SEM, EDX, XRD, polarization curve, cyclic voltammetry curve and accelerated life test. It has been shown that the anodes have uniform surface composition, and the surface density of the anodes were increased as the sintering temperature increased, some active elements were crystallization grains at the surface of the anode when sintering temperature ≥500°C. The chlorine evolution capability of anode had a tendency to increase firstly then fall down afterwards as the sintering temperature increased. But the electrocatalytic capability of anodes showed an opposite tendency. The RuO2-IrO2-TiO2/Ti anode prepared at 500°C presents the longest service life.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

1668-1672

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Trasatti S: Electrocatalysis: Understanding the success of DSA, Electrochimica Acta. Vol. 45(2000), pp.2377-2385.

DOI: 10.1016/s0013-4686(00)00338-8

Google Scholar

[2] Z. X. Zhang: Titanium electrode Engineering (Metallurgical Industry Press, Beijing, china, 2003), pp.273-276.

Google Scholar

[3] de Oliveira-Sousa. A, da Sliva. M. A. S, Machado. S. A. S, et al.: Influence of the preparation method on the morphological and electrochemical properties of Ti/IrO2-coated electrodes, Electrochimica Acta, Vol. 45(2000), pp.4467-4473.

DOI: 10.1016/s0013-4686(00)00508-9

Google Scholar

[4] Forti. J. C, Olivi. P, de Andrade. A. R: Characterisation of DSA®-type coatings with nominal composition Ti/Ru0.3Ti(0.7-x)SnO2 prepared via a polymeric precursor, Electrochimica Acta, Vol. 47(2001), pp.913-920.

DOI: 10.1016/s0013-4686(01)00791-5

Google Scholar

[5] Terczo. A. J, Pereira. E. C: Preparation and characterization of Ti/RuO2 anodes obtained by sol-gel and conventional routes, Materials Letters, Vol. 53(2002), pp.339-345.

DOI: 10.1016/s0167-577x(01)00504-3

Google Scholar

[6] H. B. Pan, H. Liu, W. Q. Jiao: Selection of oxidative thermal treatment temperature of Ti/IrO2 coating anodes, Rare metal materials and Engineering. Vol. 28(1999), p.50.

Google Scholar

[7] J. M. Hu, Y. Y. Hou, X. M. Wang et al.: Effect of calcinations procedure on the electrocatalytic activities of Ti/IrO2 electrodes in acidic aqueous solution, Journal of Chemical Physics. Vol. 22(2006), pp.1010-1014.

Google Scholar

[8] Yoshio Takasu, Satoshi Onoue, Kohichi Kameyama et al.: Preparation of ultrafine RuO2-IrO2-TiO2 oxide particles by solgel process, Electrochimica Acta, Vol. 39 (1994), p.1996.

DOI: 10.1016/0013-4686(94)85079-8

Google Scholar

[9] Y. L. Xin, L. K. Xu, J. T. Wang, et al.: Effect of sintering temperature on microsteucture and electrocatalytic properties of Ti/IrO2-Ta2O5 nano-oxide anodes, Rare metal materials and Engineering, Vol. 39 (2010), p.1903.

DOI: 10.1016/s1875-5372(10)60135-x

Google Scholar

[10] Camara O R, Trasatti S: Surface electrochemical properties of Ti/(RuO2+ZrO2) electrodes, Electrochim. Acta. Vol. 41(1996), p.420.

DOI: 10.1016/0013-4686(95)00315-0

Google Scholar

[11] Trasatti S: Physical electrochemistry of ceramic oxide, Electrochimica Acta, Vol. 36(1991), p.225.

Google Scholar

[12] J. M. Hu: Ph.D. Thesis (University of Science and Technology Beijing, Beijing, China, 2000), p.50.

Google Scholar