Synthesis of Methacryloxypropyltrimethoxysilane Grafting Silica Cryogels Using Xylene as Solvent

Article Preview

Abstract:

Grafting methacryloxypropyltrimethoxysilane (MPS) onto the surface of silica nanoparticles is the most common approach in surface chemical modification. Traditionally, ethanol or toluene was used as solvent in the grafting process. However, using ethanol as solvent brought about poor grafting result and toluene being regulated was also not an ideal grafting solvent. In order to overcome these disadvantages, we widen the grafting solvents and a novel solvent of xylene was utilized to prepare MPS grafting silica cryogels in this study. The hydrolysis of MPS was in the mixture of methanol and water using diluted hydrochloric acid solution as a catalyst. Both original and MPS-grafted samples were characterized by fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TG) and other methods. The results showed that xylene is an effective solvent in the process of grafting and the MPS was chemically bonded onto the surfaces of nano-silica particles.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

563-567

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.F. Su, L. Miao, G. Xu, S. Tanemura, Super Thermal Insulating SiO2 Cryogels Prepared by Vacuum Freeze Drying, Adv.Mater. Res. 105-106 (2010) 851-854.

DOI: 10.4028/www.scientific.net/amr.105-106.851

Google Scholar

[2] J. Fricke, T. Tillotson, Aerogels: production, characterization, and applications, Thin Solid Films. 297 (1997) 212-223.

DOI: 10.1016/s0040-6090(96)09441-2

Google Scholar

[3] G.M. Pajonk, Aerogel catalysts, Appl.Catal. 2 (1991) 217-266.

Google Scholar

[4] F.Bauer, H.J. Gläsel, U.Decker, H.Ernst, A.Freyer, E.Hartmann, V.Sauerland, R.Mehnert, Trialkoxysilane grafting onto nanoparticles for the preparation of clear coat polyacrylate systems with excellent scratch performance, Prog. Org. Coat. 47 (2003) 147-153.

DOI: 10.1016/s0300-9440(03)00117-6

Google Scholar

[5] H.B.Lu, Y.Hu, M.H.Gu, et al., Synthesis and characterization of silica-acrylic-epoxy hybrid coatings on 430 stainless steel, Surf. Coat. Technol. 204 (2009) 91-98.

DOI: 10.1016/j.surfcoat.2009.06.035

Google Scholar

[6] S.Park, K.Cho, Filler-elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites, J. Colloid Interface Sci. 267 (2003) 86-91.

DOI: 10.1016/s0021-9797(03)00132-2

Google Scholar

[7] H.Zou, S.Wu, J.Shen, Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications, Chem Rev. 108 (2008) 3893-3957.

DOI: 10.1021/cr068035q

Google Scholar

[8] T.Jesionowski, A.Krysztafkiewicz, Influence of silane coupling agents on surface properties of precipitated silicas, Appl. Surf. Sci. 172 (2001) 18-32.

DOI: 10.1016/s0169-4332(00)00828-x

Google Scholar

[9] M.Z. Rong, M.Q. Zhang and W.H. Ruan, Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review, Mater. Sci. Technol. 22 (2006) 787-796.

DOI: 10.1179/174328406x101247

Google Scholar

[10] G.D. Chen, S.X. Zhou, G.X.Gu, L.M.Wu, Modification of colloidal silica on the mechanical properties of acrylic based polyurethane/silica composites, Colloids Surf. A. 296 (2007) 29-36.

DOI: 10.1016/j.colsurfa.2006.09.016

Google Scholar

[11] Y.Y. Sun, Z.Q. Zhang, C.P. Wong, Study on mono-dispersed nano-size silica by surface modification for underfill applications, J. Colloid Interface Sci. 292 (2005) 436-444.

DOI: 10.1016/j.jcis.2005.05.067

Google Scholar

[12] Y.Q. Wang, Y.P.Li, R.Y. Zhang, L.Huang, W.W. Heet, Synthesis and Characterization of Nanosilica/Polyacrylate Composite Latex, Polym. Compos. 27 (2006) 282-288.

DOI: 10.1002/pc.20200

Google Scholar

[13] M.Z. Rong, M.Q. Zhang, S.L. Pan, K.Friedrich, Interfacial Effects in Polypropylene-Silica Nanocomposites, J. Appl. Polym. Sci. 92 (2004) 1771-1781.

DOI: 10.1002/app.20139

Google Scholar

[14] Y.K. Guo, M.Y. Wang, H.Q. Zhang, G.D. Liu, L.Q. Zhang, X.W.Qu, The Surface Modification of Nanosilica, Preparation of Nanosilica/Acrylic Core-Shell Composite Latex, and Its Application in Toughening PVC Matrix, J. Appl. Polym. Sci. 107 (2008) 2671-2680.

DOI: 10.1002/app.27310

Google Scholar

[15] E. Bourgeat-Lami, Ph. Espiard and A. Guyot, Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica: 1. Functionalization and dispersion of silica, Polymer. 36 (1995) 4385-4389.

DOI: 10.1016/0032-3861(95)96843-w

Google Scholar

[16] C.J. Pouchert, 1st Ed., The Aldrich Library of FT-IR Spectra, vol. 2, Aldrich Chemical, Wisconsin, WI, 1985.

Google Scholar

[17] J.G. Reynolds, P.R. Coronado, L.W. Hrubesh, Hydrophobic aerogels for oil-spil clean up: synthesis and characterization, J. Non-Cryst. Solids. 292 (2001) 127-137.

DOI: 10.1016/s0022-3093(01)00882-1

Google Scholar

[18] S.D. Bhagat, Y.H. Kim, M.J. Moon, et al., A cost-effective and fast synthsis of nanoporous SiO2 aerogel powders using water-glass via ambient pressure drying route, Solid State Sci. 9 (2007) 628-635.

DOI: 10.1016/j.solidstatesciences.2007.04.020

Google Scholar

[19] P.B. Sarawade, J.K. Kim, H.K. Kim, et al., High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure, Appl. Surf. Sci. 254 (2007) 574-579.

DOI: 10.1016/j.apsusc.2007.06.063

Google Scholar

[20] W.F. Liu, Z.X. Guo, J. Yu, Preparation of Crosslinked Composite Nanoparticles, J.Appl. Polym. Sci. 97 (2005) 1538-1544.

Google Scholar

[21] W.C. Li, A.H. Lu, S.C. Guo, Control of Mesoporous Structure of Aerogels Derived from Cresol-Formaldehyde, J. Colloid Interface Sci. 254 (2002) 153-157.

DOI: 10.1006/jcis.2002.8573

Google Scholar

[22] A.C. Pierre, E. Elaloui, G.M. Pajonk, Comparison of the Structure and Porous Texture of Alumina Gels Synthesized by Different Methods, Langmuir. 14 (1998) 66-73.

DOI: 10.1021/la970044u

Google Scholar