Fabrication of Porous Mullite Ceramics with High Porosity Using Foam-Gelcasting

Article Preview

Abstract:

In this paper, porous mullite ceramics with an apparent porosity up to 81 % were fabricated by foam-gelcasting using mullite powder as raw material with solid loading of 40 vol.%. The monomers content and sitering temperature have obvious effect on the properties of porous mullite ceramics. The apparent porosity of the prepared samples was in the range of 75~82%, compressive strength, was in the range of 3.0~16.02 MPa, and thermal conductivity was between 0.14 and 0.47 W/(m•K). A complex porous microstructure was formed, where large spherical pores contained small cellular pores on their internal walls.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

580-585

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.R. Studart, U.T. Gonzenbach, E. Tervoort, and L.J. Gauckler, Processing Routes to Macroporous Ceramics: A Review, J. Am. Ceram. Soc. 89[6] (2006) 1771-1789.

DOI: 10.1111/j.1551-2916.2006.01044.x

Google Scholar

[2] H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite-A review, J. Eur. Ceram. Soc. 28 (2008) 329-344.

Google Scholar

[3] S. Kormarneni, L. Pach, R. Pidugu, Porous-Alumina Ceramics using Bohemite and Rice Flour, Mater. Res. Soc. Symp. Proc. 371 (1995) 285-290.

Google Scholar

[4] J. Saggio-Woyansky, C.E. Scott, W.P. Minnear, Processing of Porous Ceramics, Am. Ceram. Soc. Bull. 71 (1992) 1674-1682.

Google Scholar

[5] D.A. Hirschfeld, T.K. Li, D.M. Liu, Processing of porous oxide ceramics, Key Eng. Mater. 115 (1996) 65-80.

Google Scholar

[6] D.M. Liu, Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic, Ceram. Int. 23 (1997) 135-139.

DOI: 10.1016/s0272-8842(96)00009-0

Google Scholar

[7] S.F. Corbin, P.S. Apte, Engineered porosity via tape casting, lamination and the percolation of pyrolyzable particulates, J. Am. Ceram. Soc. 82 (1999) 1693-1701.

DOI: 10.1111/j.1151-2916.1999.tb01988.x

Google Scholar

[8] S.F. Corbin, J. Lee, X. Qiao, Influence of green formulation and pyrolyzable particulates on the porous microstructure and sintering characteristics of tape cast ceramics. J. Am. Ceram. Soc. 84 (2001) 41-47.

DOI: 10.1111/j.1151-2916.2001.tb00605.x

Google Scholar

[9] J.H. She, T. Ohji, Fabrication and Characterization of Highly Porous Mullite Ceramics, Mater. Chem. Phys. 80 (2003) 610-614.

DOI: 10.1016/s0254-0584(03)00080-4

Google Scholar

[10] R. Barea, M.I. Osendi, J.M.F. Ferreira, et a1., Thermal conductivity of highly porous mullite material, Acta Materialia, 53 (2005) 33l3-33l8.

DOI: 10.1016/j.actamat.2005.03.040

Google Scholar

[11] A.C. Young, O.O. Omatete, M.A. Janney, et al., Gelcasting of alumina, J. Am. Ceram. Soc. 74[3] (1991) 612-618.

Google Scholar

[12] D.M. Baskin, M.H. Zimmerman, K.T. Faber, Forming single-phase laminates via the gelcasting technique, J. Am. Ceram. Soc.80[11] (1991) 2929-2932.

DOI: 10.1111/j.1151-2916.1997.tb03213.x

Google Scholar

[13] Y.F. Gu, X.Q. Liu, G.Y. Meng et al., Porous YSZ ceramics by water-based gelcasting, Ceram. Int. 25[8] (1999) 705-709.

DOI: 10.1016/s0272-8842(99)00005-x

Google Scholar

[14] Y.F. Liu, X.Q. Liu, H. Wei, and G.Y. Meng, Porous Mullite Ceramics from National Clay Produced by Gelcasting, Ceram. Int. 27[1] (2001) 1-7.

DOI: 10.1016/s0272-8842(00)00034-1

Google Scholar

[15] L.Z. Zhou, C.A. Wang, Fabrication of Low Density High Strength Porous Mullite Ceramics by Tert-butyl alcohol-based Gelcasting Process, J. Inorg. Mater. 24[6] (2009) 1173- 1177.

DOI: 10.3724/sp.j.1077.2009.01173

Google Scholar

[16] R. Atisivan, S. Bose, and A. Bandyopadhyay, Porous Mullite Performs Via Fused Deposition, J. Am. Ceram. Soc. 84[1] (2001) 221-223.

DOI: 10.1111/j.1151-2916.2001.tb00635.x

Google Scholar

[17] S.Q. Ding, Y.P. Zeng and D.L. Jiang, Fabrication of Mullite Ceramics With Ultrahigh Porosity by Gel Freeze Drying, J. Am. Ceram. Soc. 90[7] (2007) 2276-2279.

DOI: 10.1111/j.1551-2916.2007.01696.x

Google Scholar

[18] P. Sepulveda, J.G.P. Binner, Processing of Cellular Ceramics by Foaming and insitu Polymerization of Organic Monomers, J. Eur. Ceram. Soc. 19 (1999) 2059-2066.

DOI: 10.1016/s0955-2219(99)00024-2

Google Scholar

[19] H.j. Kim, S.H. Lee, Y. Han et al., Control of pore size in ceramic foams: Influence of surfactant concentration, Mater. Chem. Phys. 113 (2009) 441-444.

DOI: 10.1016/j.matchemphys.2008.07.099

Google Scholar