[1]
A.R. Studart, U.T. Gonzenbach, E. Tervoort, and L.J. Gauckler, Processing Routes to Macroporous Ceramics: A Review, J. Am. Ceram. Soc. 89[6] (2006) 1771-1789.
DOI: 10.1111/j.1551-2916.2006.01044.x
Google Scholar
[2]
H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite-A review, J. Eur. Ceram. Soc. 28 (2008) 329-344.
Google Scholar
[3]
S. Kormarneni, L. Pach, R. Pidugu, Porous-Alumina Ceramics using Bohemite and Rice Flour, Mater. Res. Soc. Symp. Proc. 371 (1995) 285-290.
Google Scholar
[4]
J. Saggio-Woyansky, C.E. Scott, W.P. Minnear, Processing of Porous Ceramics, Am. Ceram. Soc. Bull. 71 (1992) 1674-1682.
Google Scholar
[5]
D.A. Hirschfeld, T.K. Li, D.M. Liu, Processing of porous oxide ceramics, Key Eng. Mater. 115 (1996) 65-80.
Google Scholar
[6]
D.M. Liu, Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic, Ceram. Int. 23 (1997) 135-139.
DOI: 10.1016/s0272-8842(96)00009-0
Google Scholar
[7]
S.F. Corbin, P.S. Apte, Engineered porosity via tape casting, lamination and the percolation of pyrolyzable particulates, J. Am. Ceram. Soc. 82 (1999) 1693-1701.
DOI: 10.1111/j.1151-2916.1999.tb01988.x
Google Scholar
[8]
S.F. Corbin, J. Lee, X. Qiao, Influence of green formulation and pyrolyzable particulates on the porous microstructure and sintering characteristics of tape cast ceramics. J. Am. Ceram. Soc. 84 (2001) 41-47.
DOI: 10.1111/j.1151-2916.2001.tb00605.x
Google Scholar
[9]
J.H. She, T. Ohji, Fabrication and Characterization of Highly Porous Mullite Ceramics, Mater. Chem. Phys. 80 (2003) 610-614.
DOI: 10.1016/s0254-0584(03)00080-4
Google Scholar
[10]
R. Barea, M.I. Osendi, J.M.F. Ferreira, et a1., Thermal conductivity of highly porous mullite material, Acta Materialia, 53 (2005) 33l3-33l8.
DOI: 10.1016/j.actamat.2005.03.040
Google Scholar
[11]
A.C. Young, O.O. Omatete, M.A. Janney, et al., Gelcasting of alumina, J. Am. Ceram. Soc. 74[3] (1991) 612-618.
Google Scholar
[12]
D.M. Baskin, M.H. Zimmerman, K.T. Faber, Forming single-phase laminates via the gelcasting technique, J. Am. Ceram. Soc.80[11] (1991) 2929-2932.
DOI: 10.1111/j.1151-2916.1997.tb03213.x
Google Scholar
[13]
Y.F. Gu, X.Q. Liu, G.Y. Meng et al., Porous YSZ ceramics by water-based gelcasting, Ceram. Int. 25[8] (1999) 705-709.
DOI: 10.1016/s0272-8842(99)00005-x
Google Scholar
[14]
Y.F. Liu, X.Q. Liu, H. Wei, and G.Y. Meng, Porous Mullite Ceramics from National Clay Produced by Gelcasting, Ceram. Int. 27[1] (2001) 1-7.
DOI: 10.1016/s0272-8842(00)00034-1
Google Scholar
[15]
L.Z. Zhou, C.A. Wang, Fabrication of Low Density High Strength Porous Mullite Ceramics by Tert-butyl alcohol-based Gelcasting Process, J. Inorg. Mater. 24[6] (2009) 1173- 1177.
DOI: 10.3724/sp.j.1077.2009.01173
Google Scholar
[16]
R. Atisivan, S. Bose, and A. Bandyopadhyay, Porous Mullite Performs Via Fused Deposition, J. Am. Ceram. Soc. 84[1] (2001) 221-223.
DOI: 10.1111/j.1151-2916.2001.tb00635.x
Google Scholar
[17]
S.Q. Ding, Y.P. Zeng and D.L. Jiang, Fabrication of Mullite Ceramics With Ultrahigh Porosity by Gel Freeze Drying, J. Am. Ceram. Soc. 90[7] (2007) 2276-2279.
DOI: 10.1111/j.1551-2916.2007.01696.x
Google Scholar
[18]
P. Sepulveda, J.G.P. Binner, Processing of Cellular Ceramics by Foaming and insitu Polymerization of Organic Monomers, J. Eur. Ceram. Soc. 19 (1999) 2059-2066.
DOI: 10.1016/s0955-2219(99)00024-2
Google Scholar
[19]
H.j. Kim, S.H. Lee, Y. Han et al., Control of pore size in ceramic foams: Influence of surfactant concentration, Mater. Chem. Phys. 113 (2009) 441-444.
DOI: 10.1016/j.matchemphys.2008.07.099
Google Scholar