Ion Irradiation Effects on Ho2+xTi2-xO7-x/2 (x=0, 0.4 and 0.67)

Article Preview

Abstract:

We recently synthesized different composition polycrystalline Ho2+xTi2-xO7-x/2 (x=0, 0.4 and 0.67), which is derivative fluorite compounds known as and pyrochlore phases in Ho3O2-TiO2 phase diagram by using conventional solid state synthesis methods. The samples were irradiated with 400 keV Ne2+ ions at cryogenic temperature (~77 K), using the Danfysik ion accelerator at the Ion Beam Materials Laboratory (IBML) of Los Alamos National Laboratory (LANL). The irradiation fluences in the experiments ranged from 5×1014-5×1015 ions/cm2. An order-to-disorder (O-D) transformation was observed for α, β and pyrochlore phases, as determined using grazing incidence X-ray diffraction (GIXRD) at an incident angle of 0.25°. The O-D transformation threshold fluence for α phase was found to be noticeably lower than those for β phase and pyrochlore, and the O-D transformation threshold fluence for β phase was the highest. The O-D transformation threshold fluence was found to be coherent with the phase transformation temperature in the Ho3O2-TiO2 temperature-composition (T-C) phase diagram.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

643-647

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.C. Ewing, Ceramic matrices for plutonium disposition, Prog. Nucl. Eng. 49 (2007) 635-643.

Google Scholar

[2] W.J. Weber, R.C. Ewing, C.R.A. Catlow, et al., Radiation effects in crystalline ceramics ceramics for the immobilization of high-level nuclear waste and plutonium, J. Mater. Res. 13 (1998) 1434-1484.

DOI: 10.1557/jmr.1998.0205

Google Scholar

[3] R.C. Ewing, W.J. Weber, J.Lian, Nuclear waste disposal―pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and "minor" actinides, J. Appl. Phys. 95 (2004) 5949-5971.

DOI: 10.1063/1.1707213

Google Scholar

[4] M.Tang, P.Lu, J.A. Valdez, K.E. Sickafus, Ion-irradiation-induced phase transformation in rare earth sesquioxides (Dy2O3,Er2O3,Lu2O3) , J. Appl. Phys. 99 (2006) 063514-063514-7.

DOI: 10.1063/1.2184433

Google Scholar

[5] K.E. Sickafus, R.W. Grimes, J.A. Valdez, et al., Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides, Nat. Mater. 6 (2007) 217-223.

DOI: 10.1038/nmat1842

Google Scholar

[6] J.Zhang, Y.Q. Wang, M.Tang, J.A. Valdez, K.E. Sickafus, Ion irradiation induced order-to-disorder transformations in δ-phase Sc4−xZr3+xO12+x/2, Nucl. Instr. Meth. B. 268 (2010) 3018-3022.

DOI: 10.1016/j.nimb.2010.05.031

Google Scholar

[7] J. Zhang, Y.Q. Wang, J.A. Valdez, M. Tang, K.E. Sickafus , Irradiation induced order–disorder phase transformation in A4Zr3O12 (A = Sc, Lu and Dy), Nucl. Instr. Meth. B. 419 (2011) 386-391.

DOI: 10.1016/j.jnucmat.2011.08.004

Google Scholar

[8] G.E. Sukhanova, K.N. Guseva, A.V. Kolesnikov, L. G. Shcherbakova, Ho2O3-TiO2 T-C phase diagram, Inorg. Mater. 18 (1982), 1742-1745.

Google Scholar

[9] A.V. Shlyakhtina, S.N. Savvin, A.V. Levshenko, M.V. Boguslavskii, L.G. Shcherbakova, Heavily doped oxygen-ion conducting Ln2+xTi2-xO7-d (Ln=Ho-Lu; x=0.44-0.81) pyrochlores: Crystal structure, microstructure and electrical conductivity, Solid State Ion 179 (2008) 985-990.

DOI: 10.1016/j.ssi.2008.01.041

Google Scholar

[10] A.V. Shlyakhtina, D.A. Belov, O.K. Karyagina, L.G. Shcherbakova, Ordering processes in Ln2TiO5 (Ln=Dy-Lu): The role of thermal history, J. Alloys and Compounds. 479 (2009) 6-10.

DOI: 10.1016/j.jallcom.2008.12.058

Google Scholar

[11] M.Tang, J.A. Valdez, P.Lu, G. E. Gosnell, et al., A cubic-to-monoclinic structural transformation in the sesquioxide Dy2O3 induced by ion irradiation, J. Nucl. Mater. 328 (2004),71-76.

DOI: 10.1016/j.jnucmat.2004.02.014

Google Scholar

[12] Y.H. Li, Y.Q. Wang, M.Zhou, et al., Light ion irradiation effects on stuffed Induced Lu2(Ti2-xLux)O7-x/2 (x=0, 0.4 and 0.67) structures, Nucl. Instr. Meth. B 269 (2011), 2001-2005.

DOI: 10.1016/j.nimb.2011.05.036

Google Scholar

[13] G.C. Lau, B.D. Muegge, T.M.McQueen, E.L. Duncan, R.J. Cava, Stuffed rare earth pyrochlore solid solutions, J. Solid State Chem. 179 (2006), 3126-3135.

DOI: 10.1016/j.jssc.2006.06.007

Google Scholar

[14] G.C. Lau, T.M.McQueen, Q.Huang, H.W. Zandbergen, R.J. Cava, Long- and short-range order in stuffed titanate pyrochlores, J. Solid State Chem. 181 (2008) 45-50.

DOI: 10.1016/j.jssc.2007.10.025

Google Scholar

[15] Y.H. Li, C.P.Xu, C.Gao, Z.G. Wang, Ne2+ Ion Irradiation Induced Swelling Effects in Pyrochlore Ho2Ti2O7 by Using a GIXRD Technique, Chin. Phys. Lett. 28 (2011), 066102(1)-066102(4).

DOI: 10.1088/0256-307x/28/6/066102

Google Scholar