Preparation and Characterization of Activated Sericite Modified by Fluorosilicate and Acid

Article Preview

Abstract:

Although sericite belongs to 2:1 clay minerals, it hardly has intercalation properties because it has high layer charge density, which produces pretty strong electrostatic force. Therefore, the purpose of activation is to permanently reduce the layer charge of sericite and obtain numbers of exchangeable cations. The original sericite (S0) was sintered at 800 °C for 1 h. After that, thermal-treated sericite (S1) was activated with sodium fluosilicate and nitric acid, whose effects were characterized by X-ray diffraction (XRD) analysis, chemical analysis and zeta electric potential analysis. The dissolving-out amount of Al3+ of acid-treated product (S2) reached circa 65 mg/g at the optimal processing conditions. After sodium modification with NaCl, CEC of final resulting product (S3) was increased to 14.34 meq/100g compared with that of original sericite (4.94 meq/100g). The results of chemical analysis and zeta electric potential analysis indicated that acid activation with sodium fluosilicate and nitric acid decreased the layer charge of sericite.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

661-665

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Yano, A. Usuki, A. Okada, T. Kurauchi, O. Kamigaito, Synthesis and Properties of Polyimide Clay Hybrid, J. Polym. Sci., Part A: Polym. Chem. 31 (1993) 2493-2498.

DOI: 10.1002/pola.1993.080311009

Google Scholar

[2] E. P. Giannelis, E. Hackett, E. Manias, Molecular dynamics simulations of organically modified layered silicates, J. Chem. Phys. 108 (1998) 7410-7415.

DOI: 10.1063/1.476161

Google Scholar

[3] A. C. Balazs, V. V. Ginzburg, Calculating phase diagrams for nanocomposites: The effect of adding end-functionalized chains to polymer/clay mixtures, Adv. Mater. 12 (2000) 1805-1809.

DOI: 10.1002/1521-4095(200012)12:23<1805::aid-adma1805>3.0.co;2-z

Google Scholar

[4] E. Manias, H. Chen, R. Krishnamoorti, J. Genzer, E. J. Kramer, E. P. Giannelis, Intercalation kinetics of long polymers in 2 nm confinements, Macromol. 33 (2000) 7955-7966.

DOI: 10.1021/ma0009552

Google Scholar

[5] E. Manias, K. E. Strawhecker, Structure and properties of poly(vinyl alcohol)/Na+ montmorillonite nanocomposites, Chem. Mater. 12 (2000) 2943-2949.

DOI: 10.1021/cm000506g

Google Scholar

[6] H. J. Choi, S. G. Kim, Y. H. Hyun, M. S. Jhon, Preparation and rheological characteristics of solvent-cast poly(ethylene oxide)/montmorillonite nanocomposites, Macromol. Rapid Commun. 22 (2001) 320-325.

DOI: 10.1002/1521-3927(20010301)22:5<320::aid-marc320>3.0.co;2-3

Google Scholar

[7] G. Poncelet, F. J. del Rey-Perez-Caballero, Microporous 18 angstrom Al-pilared vermiculites: preparation and characterization, Microporous Mesoporous Mater. 37 (2000) 313-327.

DOI: 10.1016/s1387-1811(99)00274-7

Google Scholar

[8] R. K. Thomas, S. Williams-Daryn, The intercalation of a vermiculite by cationic surfactants and its subsequent swelling with organic solvents, J. Colloid Interface Sci. 255 (2002) 303-311.

DOI: 10.1006/jcis.2002.8673

Google Scholar

[9] S. C. Tjong, Y. Z. Meng, Y. Xu: J. Polym. Structure and properties of polyamide-6/vermiculite nanocomposites prepared by direct melt compounding, Sci., Part B: Polym. Phys. 40 (2002) 2860-2870.

DOI: 10.1002/polb.10335

Google Scholar

[10] Y. Z. Meng, J. Xu, R. K. Y. Li, Y. Xu, Preparation and properties of poly(vinyl alcohol)-vermiculite nanocomposites, J. Polym. Sci., Part B: Polym. Phys. 41 (2003) 749-755.

DOI: 10.1002/polb.10404

Google Scholar

[11] S. C. Tjong, Y. Z. Meng, Preparation and characterization of melt-compounded polyethylene/vermiculite nanocomposites, J. Polym. Sci., Part B: Polym. Phys. 41 (2003), 1476-1484.

DOI: 10.1002/polb.10497

Google Scholar

[12] M. G. da Fonseca, A. F. Wanderley, K. Sousa, L. N. H. Arakaki, Interaction of aliphatic diamines with vermiculite in aqueous solution, Appl. Clay Sci. 32 (2006) 94-98.

DOI: 10.1016/j.clay.2005.10.013

Google Scholar

[13] Z. Y. Chen, L. Wang, X. Wang, S. Y. Yan, J. H. Wang, Y. W. Fan, Preparations of organo-vermiculite with large interlayer space by hot solution and ball milling methods, Appl. Clay Sci. 51 (2011) 151-157.

DOI: 10.1016/j.clay.2010.11.023

Google Scholar

[14] X. F. Yu, B. Ram, X. C. Jiang, Parameter setting in a bio-inspired model for dynamic flexible job shop scheduling with sequence-dependent setups, Eur. J. Ind. Eng. 1 (2007) 182-199.

DOI: 10.1504/ejie.2007.014108

Google Scholar

[15] W. R. Caseri, R. A. Shelden, U. W. Suter, Preparation of Muscovite with Ultrahigh Specific Surface-Area by Chemical Cleavage, Colloid. Polym. Sci. 270 (1992) 392-398.

DOI: 10.1007/bf00655855

Google Scholar

[16] Y. H. Shen, Y. J. Shih, Swelling of sericite by LiNO(3)-hydrothermal treatment, Appl. Clay Sci. 43 (2009) 282-288.

DOI: 10.1016/j.clay.2008.09.006

Google Scholar

[17] M. Valášková, K. Barabaszová, M. Hundáková, M. Ritz, E. Plevová, Effects of brief milling and acid treatment on two ordered and disordered kaolinite structures, Appl. Clay Sci. 54 (2011) 70-76.

DOI: 10.1016/j.clay.2011.07.014

Google Scholar

[18] I. Girgin, A. Obut, Hydrogen peroxide exfoliation of vermiculite and phlogopite, Miner. Eng. 15 (2002) 683-687.

DOI: 10.1016/s0892-6875(02)00161-9

Google Scholar