First-Principles Investigation of Electronic Structural and Optical Properties of Rare Earth Doped β-Si3N4 Crystals

Article Preview

Abstract:

Based on the density functional theory within the generalized gradient approximation (GGA) method, the geometric structure, electronic and dielectric properties of rare earth (La and Y) doped β-Si3N4 were studied and the origin of the differences and similarities among the rare earths (La and Y) characterized in this work were discussed. The fully relaxed structural parameters of β-SiN4 crystal are found to be in good agreement with experimental data. The formation energy calculations indicate that both La and Y atoms are preferentially doped on the Si sites, which is in agreement with previous experimental observations. Furthermore, the calculated band gap of the doped structures decreases significantly, specifically, the larger La atom results in narrower band gap than that of Y doped β-Si3N4. The reason was extensively analyzed by the density of states (DOS). Subsequently, the dielectric function, absorption coefficient of the polycrystalline were compared with these values for plane polarized at [100] and [001] directions. The calculations show that the optical dielectric constant in the rare earth (especially La) doped structures increase remarkably, compared with the undoped β-Si4N4.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

864-868

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Klemm, Silicon Nitride for High-Temperature Applications, J. Am. Ceram. Soc. 93 (2010) 1501-1515.

Google Scholar

[2] P. F. Becher, S. L. Hwang, C. H. Hsueh, Semiconductor nanocrystal, Mater. Res. Soc. Bull. 20 (1995) 23-32.

Google Scholar

[3] E. Tani, S. Umebayashi, K. Kishi, Gas-pressure sintering of Si3N4 with concurrent additon of Al2O3 and 5 wt pct rare earth oxide-High fracture toughness Si3N4 with fiber-like structure, Am. Ceram. Soc. Bull. 65 (1986) 1311-1315.

Google Scholar

[4] A. Ziegler, J. C. Idrobo, M. K. Cinibulk, et al., Interface structure and atomic bonding characteristics in silicon nitride ceramics, Science 306 (2004) 1768-1770.

DOI: 10.1126/science.1104173

Google Scholar

[5] N. Shibata, S. J. Pennycook, T. R. Gosnell, et al., Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions, Nature 428 (2004) 730-733.

DOI: 10.1038/nature02410

Google Scholar

[6] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864-871.

DOI: 10.1103/physrev.136.b864

Google Scholar

[7] W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133-1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[8] N. Shibata, G. S. Painter, P. F. Becher, et al., Atomic ordering at an amorphous/crystal interface, Appl. Phys. Lett. 89 (2006) 051908-1-051908-3.

DOI: 10.1063/1.2245212

Google Scholar

[9] J. A. Wendel, W. A. Goddard, The Hessian biased force field for silicon nitride ceramics: Predictions of thermodynamic and mechanical properties for α-and β-Si3N4, J. Chem. Phys. 97 (1992) 5048-5062.

DOI: 10.1063/1.463859

Google Scholar

[10] J. Dong, O. F. Sankey, Comment on 'Assignment of the raman active vibration modes of β-Si3N4 using micro-raman scattering', J. Appl. Phys. 87 (2000) 958-959.

DOI: 10.1063/1.371969

Google Scholar

[11] J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[12] R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55 (1985) 2471-2474.

DOI: 10.1103/physrevlett.55.2471

Google Scholar

[13] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41 (1990) 7892-7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[14] H. J. Monkhorst, J. D. Pack, Special points for brillonin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[15] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41 (1990) 7892-7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[16] S. B. Zhang, J. E. Northrup, Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diff'usion, Phys. Rev. Lett. 67 (1991) 2339-2342.

DOI: 10.1103/physrevlett.67.2339

Google Scholar

[17] A. V. Vishnyakov, Y. N. Novikov, V. A. Gritsenko et al., The charge transport mechanism in silicon nitride: multi-phonon trap ionization, Solid-State Electron. 53 (2009) 251-255.

DOI: 10.1016/j.sse.2008.07.005

Google Scholar