First Principles Investigation of Electronic Structure, Chemical Bonding, Elastic and Optical Properties of Novel Rhenium Nitrides

Article Preview

Abstract:

we investigate the electronic structure, chemical bonding, optical and elastic properties of the novel rhenium nitrides, hexagonal phase re3n and re2n by using density-functional theory (dft) within generalized gradient approximation (gga). the calculated equilibrium lattice constants of both re3n and re2n are in reasonable agreement with the experimental results. the band structure along the higher symmetry axes in the Brillouin zone, the density of states (dos) and the partial density of states (pdos) are presented. the calculated energy band structures and dos show that re3n and re2n are metal compounds. The dos and pdos show that the dos at the fermi level (ef) is located at the bottom of a valley and originate mainly from the 5d electrons of re. population analyses suggest that the chemical bonding in re3n and re2n has predominantly covalent character with mixed covalent and ionic characteristics. the dielectric function, reflectivity, absorption coefficient, refractive index, electron energy-loss function and optical conductivity are presented in an energy range for discussing the optical properties of re3n and re2n. basic mechanical properties, such as elastic constants cij, bulk modulus b and shear modulus g are calculated. The young’s modulus e, poisson's ratio ν and bh/gh are also predicted. results conclude that the hexagonal phase re3n and re2n are mechanical stable and behaves in a ductile manner. polycrystalline elastic anisotropy is also derived from polycrystalline bulk modulus b and shear modulus g.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

883-889

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Brazhkin, N. Dubrovinskaia, A. Nicol, et al., What does 'harder than diamond' mean, Nature Mater. 3(9) (2004) 576-577.

DOI: 10.1038/nmat1196

Google Scholar

[2] Y. Meng, H. K. Mao, P. J. Eng, The formation of sp3 bonding in compressed BN, Nature Mater. 3(2) (2004) 111-114.

Google Scholar

[3] O. O. Kurakevych, Superhard phases of simple substances and binary compounds of the B-C-N-O system: from diamond to the latest results, J. Superhard Mater. 31(3) (2009) 139-157

DOI: 10.3103/s1063457609030010

Google Scholar

[4] H. Chung, M. Weinberger, J. Levine, et al., Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Science 316 (2007) 436.

DOI: 10.1126/science.1139322

Google Scholar

[5] Q. F. Gu, G. Krauss, W. Steurer, Transition metal borides: superhard versus ultra-incompressible, Adv. Mater. 20 (2008) 3620-3626.

DOI: 10.1002/adma.200703025

Google Scholar

[6] R. Mohammadi, A. T. Lech, M. Xie, et al., Tungsten tetraboride, an inexpensive superhard material, Proc. Natl. Acad. Sci. USA 108 (27) (2011) 10958-10962.

DOI: 10.1073/pnas.1102636108

Google Scholar

[7] [7] A. L. Ivanovskii, Platinum group metal nitrides and carbides: synthesis, properties and simulation, Russ. Chem. Rev. 78 (2009)303-348.

DOI: 10.1070/rc2009v078n04abeh004036

Google Scholar

[8] J. F. Li, X. L. Wang, K. Liu, et al.,Crystal structures, mechanical and electronic properties of tantalum monocarbide and mononitride, J. Superhard Mater. 33(3) (2011) 173-178.

DOI: 10.3103/s1063457611030051

Google Scholar

[9] J. C. Zheng, Superhard hexagonal transition metal and its carbide and nitride: Os, OsC, and OsN, Phys. Rev. B.72 (2005) 052105.

DOI: 10.1103/physrevb.72.052105

Google Scholar

[10] E. J. Zhao, J. P. Wang, J. Meng, et al., Structural, mechanical and electronic properties of 4d transition metal mononitrides by first-principles, Comput. Mater. Sci. 47(4) (2010) 1064-1071.

DOI: 10.1016/j.commatsci.2009.12.011

Google Scholar

[11] Y. W. Li; Y. M. Ma, Crystal structure and physical properties of OsN: First-principle calculations, Solid State Commun. 150(15-16) (2010) 759-762.

DOI: 10.1016/j.ssc.2010.01.026

Google Scholar

[12] X. P. Du, Y. X. Wang, V. C. Lo, Investigation of tetragonal ReN2 and WN2 with high shear moduli from first-principles calculations, Phys. Letts. A. 374(25) (2010) 2569-2574.

DOI: 10.1016/j.physleta.2010.04.020

Google Scholar

[13] A. Friedrich, B. Winkler, L. Bayarjargal, et al., Novel rhenium nitrides, Phys. Rev. Lett. 105 (2010) 085504.

Google Scholar

[14] R. F. Zhang, Z. J. Lin, Ho-Kwang Mao, et al., Thermodynamic stability and unusual strength of ultra-incompressible rhenium nitrides, Phys. Rev. B. 83 (2011) 060101(R).

DOI: 10.1103/physrevb.83.060101

Google Scholar

[15] N. Miao, B. Sa, J. Zhou, et al., Mechanical properties and electronic structure of the incompressible rhenium carbides and nitrides: A first-principles study, Solid State Commun. 151 (2011) 1842-1845.

DOI: 10.1016/j.ssc.2011.08.011

Google Scholar

[16] V. V. Bannikov, I. R. Shein, A. L. Ivanovskii, Elastic and electronic properties of hexagonal rhenium sub-nitrides Re3N and Re2N in comparison with hcp-Re and wurtzite-like rhenium mononitride ReN, Phys. Status Solidi B. 248(6) (2011) 1369-1374.

DOI: 10.1002/pssb.201046564

Google Scholar

[17] Y. C. Liang, X. Yuan, W. Q. Zhang, Ultrastiffness and metallicity of rhenium nitrides, J. Appl. Phys. 109(5) (2011) 053501.

DOI: 10.1063/1.3556450

Google Scholar

[18] E. Deligoz, K. Colakoglu, H. B. Ozisik, et al., Vibrational properties of Re2N and Re3N compounds, Solid State Commun. 151(17) (2011) 1122-1127

DOI: 10.1016/j.ssc.2011.05.028

Google Scholar

[19] M. D. Segall, P. J. D. Lindan, M. J. Probert, et al., First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens Matter. 14(11) (2002) 2717-2744.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[20] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Letts. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[21] D. Vanderblilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990) 7892-7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[22] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[23] T. H. Fisher, J. Almlof, General methods for geometry and wave-function optimization, J. Phys. Chem. 96 (1992) 9768-9774.

DOI: 10.1021/j100203a036

Google Scholar

[24] J. Sun, H. T. Wang, J. L. He, et al. Ab initio investigations of optical properties of the high-pressure phases of ZnO, Phys. Rev. B. 71(12) (2005) 125132.

DOI: 10.1103/physrevb.71.125132

Google Scholar

[25] Y. C. Cheng, X. L. Wu, J. Zhu, et al., Optical properties of rocksalt and zinc blende AlN phases: First-principles calculations, J. Appl. Phys. 103 (2008) 073707.

DOI: 10.1063/1.2903138

Google Scholar

[26] P. Hermet, S. Goumri-Said, M. B. Kanoun, et al., First-principles investigation of the physical properties of magnesium nitridoboride, J. Phys. Chem. C. 113 (2009) 4997-5003.

DOI: 10.1021/jp8091286

Google Scholar

[27] Q. L. Xia, J. H. Yi, Y. F. Li, et al., First-principles investigations of the band structure and optical properties of γ-boron, Solid State Commun. 150 (2010) 605-608.

DOI: 10.1016/j.ssc.2009.12.040

Google Scholar

[28] X. F. Hao, Y. H. Xu, Z. J. Wu, et al., Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study, Phys. Rev. B. 74 (2006) 224112.

Google Scholar

[29] R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. London A. 65 (1952) 349-355.

Google Scholar

[30] O. L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24(7) (1963) 909-917.

DOI: 10.1016/0022-3697(63)90067-2

Google Scholar

[31] D. H. Chung, W. R. Buessem, Anisotropy in Single Crystal Refractory Compounds, Plenum, New York, 1968.

Google Scholar