[1]
V. Brazhkin, N. Dubrovinskaia, A. Nicol, et al., What does 'harder than diamond' mean, Nature Mater. 3(9) (2004) 576-577.
DOI: 10.1038/nmat1196
Google Scholar
[2]
Y. Meng, H. K. Mao, P. J. Eng, The formation of sp3 bonding in compressed BN, Nature Mater. 3(2) (2004) 111-114.
Google Scholar
[3]
O. O. Kurakevych, Superhard phases of simple substances and binary compounds of the B-C-N-O system: from diamond to the latest results, J. Superhard Mater. 31(3) (2009) 139-157
DOI: 10.3103/s1063457609030010
Google Scholar
[4]
H. Chung, M. Weinberger, J. Levine, et al., Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Science 316 (2007) 436.
DOI: 10.1126/science.1139322
Google Scholar
[5]
Q. F. Gu, G. Krauss, W. Steurer, Transition metal borides: superhard versus ultra-incompressible, Adv. Mater. 20 (2008) 3620-3626.
DOI: 10.1002/adma.200703025
Google Scholar
[6]
R. Mohammadi, A. T. Lech, M. Xie, et al., Tungsten tetraboride, an inexpensive superhard material, Proc. Natl. Acad. Sci. USA 108 (27) (2011) 10958-10962.
DOI: 10.1073/pnas.1102636108
Google Scholar
[7]
[7] A. L. Ivanovskii, Platinum group metal nitrides and carbides: synthesis, properties and simulation, Russ. Chem. Rev. 78 (2009)303-348.
DOI: 10.1070/rc2009v078n04abeh004036
Google Scholar
[8]
J. F. Li, X. L. Wang, K. Liu, et al.,Crystal structures, mechanical and electronic properties of tantalum monocarbide and mononitride, J. Superhard Mater. 33(3) (2011) 173-178.
DOI: 10.3103/s1063457611030051
Google Scholar
[9]
J. C. Zheng, Superhard hexagonal transition metal and its carbide and nitride: Os, OsC, and OsN, Phys. Rev. B.72 (2005) 052105.
DOI: 10.1103/physrevb.72.052105
Google Scholar
[10]
E. J. Zhao, J. P. Wang, J. Meng, et al., Structural, mechanical and electronic properties of 4d transition metal mononitrides by first-principles, Comput. Mater. Sci. 47(4) (2010) 1064-1071.
DOI: 10.1016/j.commatsci.2009.12.011
Google Scholar
[11]
Y. W. Li; Y. M. Ma, Crystal structure and physical properties of OsN: First-principle calculations, Solid State Commun. 150(15-16) (2010) 759-762.
DOI: 10.1016/j.ssc.2010.01.026
Google Scholar
[12]
X. P. Du, Y. X. Wang, V. C. Lo, Investigation of tetragonal ReN2 and WN2 with high shear moduli from first-principles calculations, Phys. Letts. A. 374(25) (2010) 2569-2574.
DOI: 10.1016/j.physleta.2010.04.020
Google Scholar
[13]
A. Friedrich, B. Winkler, L. Bayarjargal, et al., Novel rhenium nitrides, Phys. Rev. Lett. 105 (2010) 085504.
Google Scholar
[14]
R. F. Zhang, Z. J. Lin, Ho-Kwang Mao, et al., Thermodynamic stability and unusual strength of ultra-incompressible rhenium nitrides, Phys. Rev. B. 83 (2011) 060101(R).
DOI: 10.1103/physrevb.83.060101
Google Scholar
[15]
N. Miao, B. Sa, J. Zhou, et al., Mechanical properties and electronic structure of the incompressible rhenium carbides and nitrides: A first-principles study, Solid State Commun. 151 (2011) 1842-1845.
DOI: 10.1016/j.ssc.2011.08.011
Google Scholar
[16]
V. V. Bannikov, I. R. Shein, A. L. Ivanovskii, Elastic and electronic properties of hexagonal rhenium sub-nitrides Re3N and Re2N in comparison with hcp-Re and wurtzite-like rhenium mononitride ReN, Phys. Status Solidi B. 248(6) (2011) 1369-1374.
DOI: 10.1002/pssb.201046564
Google Scholar
[17]
Y. C. Liang, X. Yuan, W. Q. Zhang, Ultrastiffness and metallicity of rhenium nitrides, J. Appl. Phys. 109(5) (2011) 053501.
DOI: 10.1063/1.3556450
Google Scholar
[18]
E. Deligoz, K. Colakoglu, H. B. Ozisik, et al., Vibrational properties of Re2N and Re3N compounds, Solid State Commun. 151(17) (2011) 1122-1127
DOI: 10.1016/j.ssc.2011.05.028
Google Scholar
[19]
M. D. Segall, P. J. D. Lindan, M. J. Probert, et al., First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens Matter. 14(11) (2002) 2717-2744.
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[20]
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Letts. 77 (1996) 3865-3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[21]
D. Vanderblilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990) 7892-7895.
DOI: 10.1103/physrevb.41.7892
Google Scholar
[22]
H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188-5192.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[23]
T. H. Fisher, J. Almlof, General methods for geometry and wave-function optimization, J. Phys. Chem. 96 (1992) 9768-9774.
DOI: 10.1021/j100203a036
Google Scholar
[24]
J. Sun, H. T. Wang, J. L. He, et al. Ab initio investigations of optical properties of the high-pressure phases of ZnO, Phys. Rev. B. 71(12) (2005) 125132.
DOI: 10.1103/physrevb.71.125132
Google Scholar
[25]
Y. C. Cheng, X. L. Wu, J. Zhu, et al., Optical properties of rocksalt and zinc blende AlN phases: First-principles calculations, J. Appl. Phys. 103 (2008) 073707.
DOI: 10.1063/1.2903138
Google Scholar
[26]
P. Hermet, S. Goumri-Said, M. B. Kanoun, et al., First-principles investigation of the physical properties of magnesium nitridoboride, J. Phys. Chem. C. 113 (2009) 4997-5003.
DOI: 10.1021/jp8091286
Google Scholar
[27]
Q. L. Xia, J. H. Yi, Y. F. Li, et al., First-principles investigations of the band structure and optical properties of γ-boron, Solid State Commun. 150 (2010) 605-608.
DOI: 10.1016/j.ssc.2009.12.040
Google Scholar
[28]
X. F. Hao, Y. H. Xu, Z. J. Wu, et al., Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study, Phys. Rev. B. 74 (2006) 224112.
Google Scholar
[29]
R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. London A. 65 (1952) 349-355.
Google Scholar
[30]
O. L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24(7) (1963) 909-917.
DOI: 10.1016/0022-3697(63)90067-2
Google Scholar
[31]
D. H. Chung, W. R. Buessem, Anisotropy in Single Crystal Refractory Compounds, Plenum, New York, 1968.
Google Scholar