Thermal Expansion of Anti-Perovskite Mn3Zn1-xSnxN Compounds

Article Preview

Abstract:

The anti-perovskite structured Mn3XN(X=Cu,Al,Ag,Zn,Ga,Sn,In) have wide perspective and practicability with unique advantages compared with other materials as a new negative thermal expansion (NTE) material. Because of its simple preparation and unique properties of NTE, this kind of compounds aroused scientists’ attention. The metallic nitrides Mn3Zn1-xSnxN (x=0.1, 0.2, 0.3, 0.4, 0.5) were prepared by solid-state sintering. The anti-perovskite compound Mn3Zn1-xSnxN has a cubic crystal structure with space group Pm3m. It shows that Zn element is partial replaced by Sn element. The Sn doping in Mn3Zn1-xSnxN compound can cause the thermal expansion behavior of the compound to change between positive and negative by analyzing the curve of thermal expansivity with the temperature. Mn3Zn0.7Sn0.3N shows a very strong NTE. Its negative thermal expansion coefficients were -4.39×10-4/K from 345.4 °C to 476.2 °C. In addition, the variation of the thermal expansion curve for Mn3Zn0.8Sn0.2N is almost negligible with the increasing of temperature to 600 °C, exhibiting nearly zero thermal expansion behavior. Therefore, the thermal expansion of Mn3Zn1-xSnxN could be tuned via different contents of Sn in Mn3ZnN.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 512-515)

Pages:

890-893

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Korthuis, N. Khosrovani, A.W. Sleight, N. Roberts, R. Dupree, W.M.Jr. Warren, Negative thermal expansion and phase transitions in the ZrV2-xPxO7, Chem. Mater. 7 (1995) 412-417.

DOI: 10.1021/cm00050a028

Google Scholar

[2] J.S.O. Evans, T.A. Mary, A.W. Sleight, Negative thermal expansion in a large molybdate and tungstate family, J. Solid State Chem. 133 (1997) 580-583.

DOI: 10.1006/jssc.1997.7605

Google Scholar

[3] N. Khosrovani, A.W. Sleight, T.Vogt, Structure of ZrV2O7 from -263 to 470 oC, J. Solid State Chem. 132 (1997) 355-360.

DOI: 10.1006/jssc.1997.7474

Google Scholar

[4] K. Takenaka, H. Takagi, Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides, Appl. Phys. Lett. 87 (2005) 261902.

DOI: 10.1063/1.2147726

Google Scholar

[5] K. Takenaka, H. Takagi, Magnetovolume effect and negative thermal expansion in Mn3(Cu1-xGex)N, Mater. Trans. 47 (2006) 471-474.

DOI: 10.2320/jinstmet.70.764

Google Scholar

[6] Y. Sun, C.Wang, Y.C. Wen, Negative thermal expansion in Mn3Ga(Ge,Si)N anti-perovskite materials, Mater. Sci. Forum 561-565 (2007) 557-562.

DOI: 10.4028/www.scientific.net/msf.561-565.557

Google Scholar

[7] Y. Sun, C. Wang, Y.C. Wen, L.H Chu, H. Pan, M. Nie, M.B. Tang, Negative thermal expansion and magnetic transition in anti-perovskite structured Mn3Zn1-xSnxN compounds, J. Am. Ceram. Soc. 93 (2010) 2178-2181.

DOI: 10.1111/j.1551-2916.2010.03711.x

Google Scholar

[8] R.J. Huang, L.F. Li, F.S. Gai, X.D. Xu, L.H. Qian, Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si, Appl. Phys. Lett. 93 (2008) 081902.

DOI: 10.1063/1.2970998

Google Scholar

[9] R.J. Huang, X.X. Chu, Z.X. Wu, L.F. Li, X.D. Xu, Low thermal expansion behavior and transport of Ni and Ge-doped manganese nitride materials at cryogenic temperatures, Appl. Phys. A. 99 (2010) 465-469.

DOI: 10.1007/s00339-010-5547-x

Google Scholar

[10] Y. Sun, C. Wang, Y.C. Wen, K.G. Zhu, J.T. Zhao, Lattice contraction and magnetic and electronic transport properties of Mn3Zn1-xGexN, Appl. Phys. Lett. 91 (2007) 231913.

DOI: 10.1063/1.2822813

Google Scholar

[11] Y. X. Wang, X. Ding, Y. Cheng, Y.J. Zhang, L.L. Yang, H.L. Liu, H.G. Fan, Y. Liu, J.H. Yang, Properties of co-doped ZnO films prepared by electrochemical deposition, Cryst. Res. Technol. 44 (2009) 517-520.

DOI: 10.1002/crat.200800466

Google Scholar

[12] D. Fruchartan, E. F. Bertaut, Magnetic studies of the metallic perovskite-type compounds of manganese, Phys. Soc. Jpn. 44 (1978) 781-791.

DOI: 10.1143/jpsj.44.781

Google Scholar

[13] J. P. Jardin, J. Labbe, Phase transitions and band structure in metallic perovskites (carbides and nitrides), J. Solid State Chem. 46 (1983) 275-293.

DOI: 10.1016/0022-4596(83)90152-4

Google Scholar