[1]
C.J. Brinker, and G.W. Scherer, Sol-Gel Science, Academic Press, San Diego, 1990.
Google Scholar
[2]
N. Blanchard, J.P. Boilota, P. Colomban, et al, New glasses from metal-organic precursors: preparation and properties, J. Non-Cryst. Solids. 82 (1986) 2050-209.
DOI: 10.1016/0022-3093(86)90132-8
Google Scholar
[3]
G. Carturana, G. Facchinb, V. Gottardib, et al, Preparation of supports for catalysis by the "gel route", J. Non-Cryst. Solids. 63 (1984) 273-278.
Google Scholar
[4]
E. Kroke, Y.L. Li, E. Lecomte, et al, Silazane derived ceramics and related materials, Mater Sci Eng R, 26 (2000) 97–199.
Google Scholar
[5]
V. Ischenko, E. Pippel, J. Woltersdorf, et al, Influence of the Precursor Cross-Linking Route on the Thermal Stability of Si-B-C-O Ceramics. Chem. Mater. 20 (2008) 7148-7156.
DOI: 10.1021/cm701916g
Google Scholar
[6]
S. Dire, R. Ceccato, S. Gialanella, et al, Thermal Evolution and Crystallisation of Polydimethylsiloxane-Zirconia Nano- composites Prepared by the Sol-Gel Method, J. Eur. Ceram. Soc. 19 (1999) 2849-2858.
DOI: 10.1016/s0955-2219(99)00063-1
Google Scholar
[7]
E. Ionescu, B. Papendorf, H.J. Kleebe, et al, Polymer-Derived Silicon Oxycarbide/Hafnia ceramic nanocomposites. Part I: Phase and microstructure evolution during the ceramization process, J. Am. Ceram. Soc. 93 (2010) 1774-1782.
DOI: 10.1111/j.1551-2916.2010.03765.x
Google Scholar
[8]
E. Ionescu, B. Papendorf, H.J. Kleebe, et al, Polymer-Derived Silicon Oxycarbide/Hafnia ceramic nanocomposites. Part ІІ: Stability Toward Decomposition and Microstructure Evolution at T >> 1000 °C, J. Am. Ceram. Soc. 93 (2010) 1783–1789.
DOI: 10.1111/j.1551-2916.2009.03527.x
Google Scholar
[9]
S. Dire, R. Ceccato, F. Babonneau, Structural and Micro- structural Evolution During Pyrolysis of Hybrid Polydimethylsiloxane-Titania Nanocomposites, J. Sol. Gel. Sci. Technol. 34 (2005) 53–62.
DOI: 10.1007/s10971-005-1262-z
Google Scholar
[10]
R. Harshe, C. Balan, R. Riedel, Amorphous Si(Al)OC ceramic from polysiloxanes: bulk ceramic processing, crystallization behavior and applications, J Eur. Ceram. Soc. 24 (2004) 3471–3482.
DOI: 10.1016/j.jeurceramsoc.2003.10.016
Google Scholar
[11]
M. Fukushima, E. Yasuda, Y. Nakamura, et al,Pyrolysis Behavior of Organic-Inorganic Hybrids with Si–O–Nb/Si–O–Ta Oxygen Bridged Heterometallic Bonds, J. Ceram. Soc. Jpn. 111 (2003) 857-859.
DOI: 10.2109/jcersj.111.857
Google Scholar
[12]
B. Alonso, C. Sanchez, Structural Investigation of Polydimethylsiloxane Vanadate Hybrid Materials, J. Mater. Chem. 10 (2000) 377-386.
DOI: 10.1039/a908032e
Google Scholar
[13]
M. Fukushima, E. Yasuda, Y. Nakamura, et al, Oxidation Behavior of Free Carbon and Silicon Oxycarbide in Si–Ta–C–O Ceramic, J. Ceram. Soc. Jpn. 112 (2004) S1531–S1534.
Google Scholar
[14]
E. Ionescu, C. Linck, C. Fasel, et al, Polymer-Derived SiOC/ZrO2 Ceramic Nanocomposites with Excellent High Temperature Stability, J. Am. Ceram. Soc. 93 (2010) 241-250.
DOI: 10.1111/j.1551-2916.2009.03395.x
Google Scholar
[15]
X. Liu, Y.L. Li, F. Hou, Fabrication of SiOC ceramic microparts and patterned structures from polysiloxanes via liquid cast and pyrolysis, J. Am. Ceram. Soc. 92 (2009) 49-53.
DOI: 10.1111/j.1551-2916.2008.02849.x
Google Scholar
[16]
D. Su, Y.L. Li, H. J. An, et al, Pyrolytic transformation of liquid precursors to shaped bulk ceramics, J. Eur. Ceram. Soc. 30 (2010) 1503-1511.
Google Scholar
[17]
D.S. Ruan, Y.L. Li, L. Wang, et al, Fabrication of silicon oxycarbide fibers from alkoxide solutions along the sol–gel process J. Sol Gel Sci. Technol. 56 (2010) 184-190.
DOI: 10.1007/s10971-010-2292-8
Google Scholar