[1]
K.Degroot, C.P.A T.Klein, A.A. Driessen, Calcium phosphate bioceramics, J. Head and Neck Pathol. 4 (1985) 90-94.
Google Scholar
[2]
S. Anna, P. Zofia, P. Czesawa, FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods J Mol Struct. 744–747(2005) 657-661.
DOI: 10.1016/j.molstruc.2004.11.078
Google Scholar
[3]
F.C.M. Driessens, J H M Woltgens, R M H Verbeeck, Preliminary semi-quantitative study of some gradients in human tooth enamel by infrared spectroscopy Bioceramics of calcium phosphates, J. Bull.Soc. Chim. Belg, 93(1984) 161-167.
DOI: 10.1002/bscb.19840930212
Google Scholar
[4]
K.A. Hing, L. Di-silvio, I. R. Gibson et al.: Effect of fluoride substitution on the biocompatibility of hydroxy apatite, Bioceramics. 10(1997) 19-22.
DOI: 10.1016/b978-008042692-1/50005-4
Google Scholar
[5]
L. G. Ellies, J. M. Carter, R. J. Natiella et al. Quantitative analysis of early in vivo tissue response to synthetic apatite implants,J. Biomed.Mater.Res. 22 (1988) 137-148.
DOI: 10.1002/jbm.820220206
Google Scholar
[6]
P. O'Hare, B.J. Meenan, G.A. Burke et al.: Biomaterials. Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. 31 (2010) 515-522.
DOI: 10.1016/j.biomaterials.2009.09.067
Google Scholar
[7]
O.Gunduz, Z.Ahmad, N.Ekren et al. Reinforcing of Biologically Derived Apatite with Commercial Inert Glass, J. Therm.Comp Mater. 22 (2009) 407-411.
DOI: 10.1177/0892705709105974
Google Scholar
[8]
D.J. Curran, T.J. Fleming,G. Kawachi et al,Characterisation and mechanical testing of hydrothermally treated HA/ZrO2 composites, J.Mater. Sci.Mater.Med. 20 (2009) 2235-2241.
DOI: 10.1007/s10856-009-3801-6
Google Scholar
[9]
Q.X Zhu and J.Q Wu, Investigation on heat treatment of carbonated hydroxyapatite, Funct Mater. 38(2007) 2055-2058.
Google Scholar
[10]
Q.X Zhu and J.Q Wu, Effect of initial carbonate content and heat treatments on preparation and properties of carbonated hydroxyapatite J chin ceram soc. (35)2007 866-870.
Google Scholar
[11]
A.A. Baig, J.L. Fox, J Hsu et al.: Effect of Carbonate Content and Crystallinity on the Metastable Equilibrium Solubility Behavior of Carbonated Apatites, J Colloid Interface Sci. 179(1996) 608-617.
DOI: 10.1006/jcis.1996.0255
Google Scholar
[12]
L G Ellies, D G A Nelson, J D B Featherstone, Quantitative analysis of early in vivo tissue response to synthetic apatite implants, J Biomed Mater Res, 22(1988) 541-553.
DOI: 10.1002/jbm.820220206
Google Scholar
[13]
J E Barralet, S M Best, W Bonfield, Effect of sintering parameters on the density and microstructure of carbonate hydroxyapatite, J Mater Sci Mater Med, 11(2000) 719-724.
Google Scholar
[14]
T Toru, T Ikoma, S Yasushi et al. Thermal expansion of type A carbonate apatite, Mater. Sci. Eng., B, 173(2010) 171-175.
Google Scholar
[15]
T.I. Ivanova, O.V. Frank Kamenetskaya, A.B. Kol'tsov et al: Crystal Structure of Calcium-Deficient Carbonated Hydroxyapatite. Thermal Decomposition, J. Solid State Chem. 160 (2001) 340-349.
DOI: 10.1006/jssc.2000.9238
Google Scholar
[16]
M.H. Luo, Q.Q Xu and Q.X Zhu, An investigation on thermal decomposition and reconstitution of hydroxyapatite,Chin Ceram. 43 (2007) 15-17.
Google Scholar