[1]
S. Ellingsrud and G.O. Rosvold , Analysis of data-based TV-holography system used to measure small vibration amplitudes, J. of Acoustical Soc. of America 9(2) (1992) 237-251.
DOI: 10.1364/josaa.9.000237
Google Scholar
[2]
P. Yeh P. Introduction to Photorefractive Nonlinear Optics, John Wiley, New York, (1993).
Google Scholar
[3]
S.G. Pierce, B. Culshaw, W.R. Philp, F. Lecuyer and R. Farlow R. Broadband Lamb wave measurements in aluminium and carbon/glass fibre reinforced composite using noncontacting laser generation and detection, Ultrasonics 35 (1997)105-114.
DOI: 10.1016/s0041-624x(96)00107-2
Google Scholar
[4]
G.A. Gordon, B.A. Bard and T.D. Mast, Wide-area imaging of ultrasonic Lamb wave fields by electronic speckle pattern interferometry. In: Proceedings of the SPIE Nondestructive Evaluation Techniques for Aging Infrastructure & Manufacturing (1999).
DOI: 10.1117/12.339899
Google Scholar
[5]
K.L. Teltschow, V.A. Deason, R.S. Schley and S.M. Watson, Direct imaging of traveling Lamb waves in plates using photorefractive dynamic holography. J. of Acoustical Soc. of America 106 (1999) 2578-2587.
DOI: 10.1121/1.428089
Google Scholar
[6]
F.P. Miller, A.F. Vandome and J.M. McBrewster, Laser Doppler Vibrometrer, Alphascript Publishing, (2010).
Google Scholar
[7]
P. Sriram, S. Hanagud and J.I. Craig, Scanning laser Doppler techniques for vibration testing, Experimental Techniques (1992) 21-26.
DOI: 10.1111/j.1747-1567.1992.tb00716.x
Google Scholar
[8]
A.B. Stanbridge and D.J. Ewins, Modal testing using a scanning laser Doppler vibrometer, Mech. Systems and Sig. Process. 13(2) (1999) 255-270.
DOI: 10.1006/mssp.1998.1209
Google Scholar
[9]
D.J. Ewins, Modal Testing: Theory and Practice. Taunton: Research Studies Press, second edition, (2000).
Google Scholar
[10]
D.W. Nicholson and K.A. Alnefaie, Modal moment index for damage detection in beam structures, Acta Mechanica 144(3-4) (2000) 155-167.
DOI: 10.1007/bf01170172
Google Scholar
[11]
D.M. Siringoringo and Y. Fujino, Experimental study of laser Doppler vibrometer and ambient vibration for vibration-based damage detection, Engineering Structures 28 (2006) 1803-1815.
DOI: 10.1016/j.engstruct.2006.03.006
Google Scholar
[12]
P. Castellini, G.M. Revel, Damage detection and characterisation by processing of laser vibrometer measurement results: application on composite materials, Proceedings of the 3rd International Conference on Laser Vibrometry, Ancona, June (1998).
DOI: 10.1117/12.307732
Google Scholar
[13]
P. Castellini, G.M. Revel, Laser vibration measurements and data processing for structural diagnostic on composite material, Review of Scientific Instruments 71(1) (2000) 207-215.
DOI: 10.1063/1.1150184
Google Scholar
[14]
P. Castellini, G.M. Revel, Damage detection by laser vibration measurement, Proceedings of the 15th World Congress NDT, Rome, Italy (2000).
Google Scholar
[15]
P. Qiao, K. Lu, W. Leston and J. Wang, Curvature mode shape-based damage detection in composite laminated plates, Composite Structures 80(3) (2007) 409-428.
DOI: 10.1016/j.compstruct.2006.05.026
Google Scholar
[16]
S. Chen, S. Venkatappa, S.H. Petro, J.N. Dajani and H.V.S. GangaRao, Damage detection using scanning laser vibrometer, Proceedings of the 3rd International Conference on Vibration Measurements by Laser Techniques. Ancona, Italy, June (1998).
DOI: 10.1117/12.307734
Google Scholar
[17]
M.J. Sundaresan, A. Ghoshal, M.J. Schulz, F. Ferguson, P.F. Pai and J.H. Chung, Crack detection using a scanning laser vibrometer, Proceedings of the 2nd International Workshop on Structural Health Monitoring, Stanford, California, September (1999).
Google Scholar
[18]
A. Ghoshal, A. Chattopadhyay, M.J. Schulz, R. Thornburgh and K. Waldron, Experimental investigation of damage detection in composite material structures using a laser vibrometer and piezoelectric actuators, J. of Intell. Mat. Sys. and Struct. 14(8) (2003).
DOI: 10.1177/104538903036212
Google Scholar
[19]
P.F. Pai and L.G. Young, Damage detection in beams using operational deflection shape, Int. J. of Solid and Structures 38 (2001) 3161-3192.
DOI: 10.1016/s0020-7683(00)00274-2
Google Scholar
[20]
P.F. Pai and L.G. Young, Dynamics-based damage inspection of an aircraft wing panel, J. of Intelligent Mat. Systems and Struct. 15(11) (2004) 803-821.
DOI: 10.1177/1045389x04044129
Google Scholar
[21]
S. -E. Chen, S. Venkatappa, S. Petro and H. GangaRao, Damage detection using 2-D strain energy distribution and scanning laser, Proceedings of the Proceedings of the International Modal Analysis Conference IMAC, Vol. 1, Publisher: SEM, Bethel, CT, United States, (1999).
Google Scholar
[22]
A. W. Otieno, P. Liu, V.S. Rao, and L.R. Koval , Damage detection using modal strain energy and laser vibrometer measurements. Proceedings of the SPIE Conference on Smart Structures and Materials, Newport Beach, CA, USA (2000) paper nr. 3985.
DOI: 10.1117/12.388832
Google Scholar
[23]
S. Choi, S. Park and N. Stubbs, Nondestructive damage detection in structures using changes in compliance, Int. J. of Solids and Structures 42 (2005) 4494-4513.
DOI: 10.1016/j.ijsolstr.2004.12.017
Google Scholar
[24]
D. Rezaei and F. Taheri, A novel application of laser Doppler vibrometer in a health monitoring system, J. of Mechanics of Mat. and Struct. 5(2) (2010) 289-304.
DOI: 10.2140/jomms.2010.5.289
Google Scholar
[25]
D. Acharya, Comparative experimental studies for global damage detection in plates using the scanning laser vibrometer techniques, University of Akron, MSc Thesis (2006).
Google Scholar
[26]
P.F. Pi and S. Jin, Locating structural damage by detecting boundary effects, J. of Sound and Vib. 231(4) (2000) 1079-1110.
DOI: 10.1006/jsvi.1999.2654
Google Scholar
[27]
P. Castellini and G.M. Ravel, An experimental technique for structural diagnostic based on laser vibrometry and neural networks, Shock and Vibration 7(6) (2000) 381-397.
DOI: 10.1155/2000/891975
Google Scholar
[28]
P. Castellini, G.M. Revel, E.P. Tomassini, Laser Doppler vibrometry a review of advances and applications, The Shock and Vib. Digest 30 (1998) 443-56.
DOI: 10.1177/058310249803000601
Google Scholar
[29]
P. Castellini, M. Martarelli, E.P. Tomasini, Laser Doppler vibrometry: development of advanced solutions answering to technology's needs, Mechanical Systems and Signal Processing 20(6) (2006) 1265-85.
DOI: 10.1016/j.ymssp.2005.11.015
Google Scholar
[30]
A. Klepka, W.J. Staszewski, R.B. Jenal, M. Szwedo, J. Iwaniec and T. Uhl, Nonlinear acoustics for fatigue crack detection – experimental investigations of vibro-acoustic wave modulations, Structural Health Monitoring, 11(2) (2011) 197-211.
DOI: 10.1177/1475921711414236
Google Scholar
[31]
N. Ferguson and J. Carpentier, Use of laser vibrometer as an alternative to strain gauges to measure bending strain. Proceedings of the SPIE Conference, 1084 (1989) 202-216.
DOI: 10.1117/12.952920
Google Scholar
[32]
B.S. Cazzolato, S.J. Wildy, J.D. Codrington, A.G. Kotousov and M. Shuessler, Scanning laser vibrometer for non-contact three-dimensional displacement and strain measurements, Proceedings of the Australian Acoustical Society Conference, Geelong, Australia, 24-26 November (2008).
DOI: 10.1007/s11340-011-9545-5
Google Scholar
[33]
H. Weisbecker, B.S. Cazzolato, S.J. Wildy, S. Marburg, J.D. Codrington, and A.G. Kotousov, Surface strain measurements using a 3D scanning laser vibrometer, Experimental Mechanics, (2011) accepted for publication.
DOI: 10.1007/s11340-011-9545-5
Google Scholar
[34]
D.G. Karczub and M.P. Norton, Correlation between dynamic strain and velocity in randomly excited plates and cylindrical shell with clamped boundaries. Journal of Sound and Vibration 230(5) (2000) 1069.
DOI: 10.1006/jsvi.1999.2663
Google Scholar
[35]
S.J. Wildy, B.S. Cazzolato, A.G. Kotousov and J.D. Codrington, New damage detection technique based on governing differential equations of continuum mechanics. Part I: out-of-plane loading, Proceedings of the 6th Australasian Congress on Applied Mechanics (ACAM), Perth, Australia, 12-15 December (2010).
Google Scholar
[36]
S.J. Wildy, B.S. Cazzolato and A.G. Kotouso, New damage detection technique based on governing differential equations of continuum mechanics. Part II: in-plane loading, Proceedings of the 6th Australasian Congress on Applied Mechanics (ACAM), Perth, Australia, 12-15 December (2010).
Google Scholar
[37]
H. Weisbecker, Damage detection via 3-D scanning laser vibrometer measurements utilizing the concept of strain compatibility, MSc thesis, Technical University of Dresden, Germany (2009).
Google Scholar
[38]
S.J. Wildy, H. Weisbecker, B.S. Cazzolato and A.G. Kotousov, Integration of governing differential equations of continuum mechanics with scanning laser vibrometry technology for monitoring of structural damage, Proceedings of the 5th International Workshop NDT in Progress Meeting of NDT experts, Prague, Czech Republic, Hotel and Congress center Floret (2010).
Google Scholar
[39]
S.J. Wildy, B.S. Cazzolato, B. and A.G. Kotousov, Detection of delamination damage in a composite laminate beam utilizing the principle of strain compatibility. Key Engineering Materials 417-418, (2010) 269-272.
DOI: 10.4028/www.scientific.net/kem.417-418.269
Google Scholar
[40]
S.J. Wildy, A.G. Kotousov A and J.D. Codrington, New passive defect detection technique, Proceedings of the 5th Australasian Congress on Applied Mechanics (ACAM), Brisbane 11-12 December (2007).
Google Scholar
[41]
S.J. Wildy, A.G. Kotousov and J.D. Codrington, A new passive defect detection technique based on the principle of strain compatibility, Smart Materials and Structures 17 (2008) paper 045004.
DOI: 10.1088/0964-1726/17/4/045004
Google Scholar
[42]
D.M. Donskoy and A.M. Sutin, Vibro-acoustic modulation nondestructive evaluation technique, J. Intell. Mater. Syst. Struct., 9 (1999) 765-775.
Google Scholar
[43]
V. Zaitsev V and P. Sas, Nonlinear response of a weakly damaged metal sample: a dissipative modulation mechanism of vibro-acoustic interaction, Journal of Vibration Control 6 (2000) 803-822.
DOI: 10.1177/107754630000600601
Google Scholar
[44]
Z. Parsons and W.J. Staszewski, Nonlinear acoustics with low-profile piezoceramic excitation for crack detection in metallic structures, Smart Materials and Structures 15 (2006) 1110-1118.
DOI: 10.1088/0964-1726/15/4/025
Google Scholar
[45]
P. Duffour, M. Morbidini and P. Cawley, A study of the vibro-acoustic modulation technique for the detection of cracks in metals, J. Acoust. Soc. Am, 119(3) (2006).
DOI: 10.1121/1.2161429
Google Scholar
[46]
Y. Zheng, R.G. Maev and I.Y. Solodov, Nonlinear acoustic applications for material characterization: a review, Canadian J. of Physics, 77(12) (2000) 927-967.
DOI: 10.1139/p99-059
Google Scholar
[47]
K. Haller, Nonlinear acoustics for nondestructive testing, Blekinge Institute of Technology, Sweden, Licentiate dissertation No. 2007: 07 (2007).
Google Scholar
[48]
L. Sun, Nonlinear acoustic technique for fatigue damage detection, Northwestern University, USA, PhD dissertation, EAN: 9780549501954 (2008).
Google Scholar
[49]
M. Poznić, Nonlinear interaction between ultrasonic waves and cracks and interfaces, PhD thesis, The Marcus Wallenberg Laboratory for Sound and Vibration Research, Department of Aeronautical and Vehicle Engineering, The Royal Institute of Technology, Stokholm, Sweden (2008).
Google Scholar
[50]
K. -J. Yhang, Nonlinear ultrasonic techniques for nondestructive assessment of micro-damage in material: a review, Int. J. of Precision Engineering and Manufacturing, 10(1) (2009) 123-135.
DOI: 10.1007/s12541-009-0019-y
Google Scholar
[51]
A. Klepka. W.J. Staszewski and T. Uhl, Fatigue crack detection using nonlinear acoustics and laser vibrometry, Proceedings of the 18th Int. Congress on Sound & Vib., Rio de Janeiro, Brazil, 10-14 June (2011).
Google Scholar
[52]
R.B. Jenal, W.J. Staszewski, A. Klepka and T. Uhl, Sensor location analysis for fatigue crack detection using nonlinear acoustics, the 8th Int. Worksop on SHM, Stanford, USA, 13-15 September (2011) 1359-1367.
Google Scholar
[53]
R.B. Jenal, W.J. Staszewski, A. Klepka and T. Uhl, InFocus 1 (2011) 22-24.
Google Scholar
[54]
A. Klepka, W. J. Staszewski, D. Di Maio, F. Scarpa, K. F. Tee and T. Uhl, Nonlinear wave modulation analysis for damage detection in smart chiral sandwich structures, Proceedings of the 22nd International Conference on on Adaptive Structures and Technologies (ICAST), Corfu, Greece 10-12 October (2011).
DOI: 10.4028/www.scientific.net/ast.83.223
Google Scholar
[55]
A. Klepka, W.J. Staszewski, T. Uhl, D. Di Maio, F. Scarpa and K. F. Tee Impact damage detection in composite chiral sandwich panels, Proceedings of the 2nd International Conference on Smart Diagnostics, Krakow, Poland 12-13 November (2011).
DOI: 10.4028/www.scientific.net/kem.518.160
Google Scholar
[56]
I.A. Viktorov: Rayleigh and Lamb waves, Plenum Press: New York (1967).
Google Scholar
[57]
J.L. Rose: Ultrasonic waves in solid media, Cambridge University Press, Cambridge (1999).
Google Scholar
[58]
W.J. Staszewski: Structural health monitoring using guided ultrasonic waves, In: Advances in Smart Technologies in Structural Engineering, J. Holnicki-Szulc and C.A. Mota Soares, Eds, Springer: Berlin, (2004).
DOI: 10.1007/978-3-662-05615-8_6
Google Scholar
[59]
A. Raghavan and C.E.S. Cesnik, Review of guided-wave structural health monitoring, The Shock and Vibration Digest, 39 (2007) 91-114.
DOI: 10.1177/0583102406075428
Google Scholar
[60]
A.J. Croxford, P.D. Wilcox, B.W. Drinkwater and G. Konstantinidis, Strategies for guided-wave structural health monitoring, Proc. Roy. Soc. A., 463 (2007) 2961-2981.
DOI: 10.1098/rspa.2007.0048
Google Scholar
[61]
L. Mallet, B.C. Lee, W.J. Staszewski and F. Scarpa, Damage detection in metallic structures using laser acousto-ultrasonics, Proceedings of the 4th International Workshop on Structural Health Monitoring, Stanford, California, September, (2003).
Google Scholar
[62]
M. Kehlenbach, B. Köhler, X. Cao, H. Hanselka, Numerical and experimental investigation of Lamb wave interaction with discontinuities, Proceedings of the 4th International Workshop on Structural Health Monitoring, Stanford, California, September (2003).
Google Scholar
[63]
B. Köhler, Recent progress in scanning laser detection of pulse-echo ultrasound in concrete, J. of NDT ( (2004) 1-8.
Google Scholar
[64]
B. Köhler, M. Kehlenbach and R. Bilgam, Optical measurement and visualisation of transient ultrasonic wave fiels, In: Acoustical Imaging, 27, W. Arnold and S. Hirsekom, Eds., Kluwer Academic/Plenum Publishers, Dordrecht & New York (2004) 315-322.
DOI: 10.1007/978-1-4020-2402-3_40
Google Scholar
[65]
B. Köhler, Dispersion relations in plate structures studied with a scanning laser vibrometer, Proceedings of the ECNDT (2006) mo. 2. 1. 4.
Google Scholar
[66]
W.J. Staszewski, B.C. Lee, L. Mallet and F. Scarpa, Structural health monitoring using scanning laser vibrometry. part I: Lamb wave sensing, Smart Materials and Structures 13(2) (2004) 251-260.
DOI: 10.1088/0964-1726/13/2/002
Google Scholar
[67]
W.J. Staszewski, B.C. Lee, L. Mallet and F. Scarpa, Structural health monitoring using scanning laser vibrometry. part II: Lamb wave for damage detection, Smart Materials and Structures 13(2) (2004) 261-269.
DOI: 10.1088/0964-1726/13/2/003
Google Scholar
[68]
W.H. Leong, B.C. Lee, W.J. Staszewski and F. Scarpa, Structural health monitoring using scanning laser vibrometry. part III: Lamb wave for fatigue crack detection, Smart Materials and Structures 14(6) (2005) 1387-1395.
DOI: 10.1088/0964-1726/14/6/031
Google Scholar
[69]
W.H. Leong, B.C. Lee, W.J. Staszewski and F. Scarpa, Crack detection in metallic structures using Lamb waves and scanning laser vibrometry, the 2nd European Workshop on SHM, Munich, Germany, 7-9 July (2004) 885-890.
DOI: 10.1088/0964-1726/14/6/031
Google Scholar
[70]
M. Ruzzene, S.M. Jeing, T.E. Michaels, J.E. Michaels and B. Mi, Simulations and measurement of ultrasonic waves in elastic plates using laser vibrometry, Proceedings of QNDE (2004).
Google Scholar
[71]
J. Ayers, N. Apetre, M. Ruzzene and K. Sabra, Measurment of Lamb wave polarization using a one dimensional scanning laser vibrometer (L)m J. Acoust. Soc. of Am. 129(2) (2011) 585-588.
DOI: 10.1121/1.3523429
Google Scholar
[72]
T.E. Michaels, J.E. Michaels and M. Ruzzene, Frequency–wavenumber domain analysis of guided wavefields, Ultrasonics, 51(4) (2011) 452-466.
DOI: 10.1016/j.ultras.2010.11.011
Google Scholar
[73]
W.J. Staszewski, Healthy airplanes - health monitoring of aerospace structures: laser vibrometry for damage detection using Lamb waves, In Focus Issue 2 (2006) 9-11.
Google Scholar
[74]
W.J. Staszewski, B.C. Lee and R. Traynor, Fatigue crack detection in metallic structures with Lamb waves and 3D laser vibrometry, Measurement Science and Technology 18 (2007) 727-739.
DOI: 10.1088/0957-0233/18/3/024
Google Scholar
[75]
W.J. Staszewski, B.C. Lee and R. Traynor, Structural damage detection using Lamb waves and 3-D laser vibrometry, Proceedings of the 4th European Workshop on SHM, Krakow, Poland, 24- July (2008).
Google Scholar
[76]
W.J. Staszewski, S. Mahzan S and R. Traynor, Health monitoring of aerospace composite structures – active and passive approach, Composite Science and Technology 69(11-12) (2009) 1678-1685.
DOI: 10.1016/j.compscitech.2008.09.034
Google Scholar
[77]
M. Barth, B. Köhler and F. Schubert, 3-D visualization of Lamb waves by laser vibrometry, Proceedings of the 4th EWSHM, Krakow, Poland, 2-4 July (2008) 641-648.
Google Scholar
[78]
J Pohl, G. Mook, R. Lammering, and S. von Ende, Laser vibrometric measurement of oscillationg piezoelectric actuators and of lamb waves in CFRP plates for structural health monitoring, the 9th Int. Conf. on Vib. Measurement by laser and non-contact techniques and short course, AIP Conf. Proc., Ancona, Italy, 22-25 June (2010).
DOI: 10.1063/1.3455490
Google Scholar
[79]
R.B. Jenal, W.J. Staszewski, A. Klepka and T. Uhl, Structural health monitoring using laser vibrometers, Proceedings of the 2nd Int. Symposium on NDT in Aerospace (2010) Tu 1.B. 3.
Google Scholar
[80]
W. Ostachowicz, T. Wandowski and P. Malinowski, Damage detection using laser vibrometry, Proceedings of the 2nd Int. Symposium on NDT in Aerospace (2010) Mo. 4.A. 2.
Google Scholar
[81]
W.J. Staszewski, Non-destructive inspection of reusable launch vehicle components using guided ultrasonic waves and laser vibrometry Technical Report for EADS-Astrium, No. 25/2011, 57 pages, Department of Mechanical Engineering, Sheffield University (2011).
Google Scholar
[82]
E. Swenson, H. Sohn, S. Olson and M. Desimio, A comparison of 1D and 3D laser vibrometry measurements of Lamb waves, Proceedings of the SPIE Conf. on Smart Materials and Structures 7650 (2010) paper no. 765003.
DOI: 10.1117/12.847362
Google Scholar
[83]
V.K. Sharma, Laser Doppler vibrometer, for efficient structural health monitoring, ProQuest iPad version, LLC (2010).
Google Scholar