Vibrothermographic Testing of Structures

Article Preview

Abstract:

The paper investigates practical aspects of vibrothermographic testing of structures. Two application cases of vibrothermography are presented and discussed. The examples are weld test specimens and a military aircraft skin. Measurements have been performed with use of an in-house vibrothermographic testing system. In case of welded specimens a series of carbon steel test samples with different flaw types have been investigated. In case of aircraft testing, field measurements have been performed on a wing and fuselage sections in order to assess their structural integrity. The paper presents thermal image processing technique that allows to increase the quality and readability of the results coming from field measurements with poor ultrasonic excitation and with low thermal response from the structure. The paper is concluded with the discussion on applications of vibrothermographic testing in Structural Health Monitoring.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

418-427

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Randall R. B., 2010, Vibration-based Condition Monitoring: Industrial, Automotive andAerospace Applications, John Wiley and Sons.

Google Scholar

[2] Inman D. J., Farrar C. R., Lopes Junior V., Steffen Junior V. (Eds. ), 2005, Damage prognosis for aerospace, civil and mechanical systems, John Wiley & Sons.

DOI: 10.1002/0470869097

Google Scholar

[3] Staszewski W.J., Boller C., Tomlinson G.R. (Eds. ). 2003, Health Monitoring of AerospaceStructures. John Wiley & Sons.

Google Scholar

[4] Fritzen C. -P., 2005, Vibration-Based Structural Health Monitoring – Concepts and Applications, Key Engineering Materials, Vol. 293-294, pp.3-20.

DOI: 10.4028/www.scientific.net/kem.293-294.3

Google Scholar

[5] Maldague X., 2001, Theory and practice of infrared technology for nondestructive testing. JohnWiley & Sons, 684 p.

Google Scholar

[6] Shepard S., 2007, Back to Basics: Thermography of Composites. ASNT Materials Evaluation, Vol. 65(7), pp.690-696.

Google Scholar

[7] Henneke E.G., Reifsnider K.L., Stinchcomb W.W., 1979, Thermography – An NDI Method for Damage Detection, J. Metals, Vol. 31(9), p.11–15.

DOI: 10.1007/bf03354475

Google Scholar

[8] Reifsnider K.L., Henneke E.G., Stinchcomb W.W., 1980, The Mechanics of Vibrothermography, Mechanics of Nondestructive Testing, Plenum Press, New York, p.249–276.

DOI: 10.1007/978-1-4684-3857-4_12

Google Scholar

[9] Favro L.D., Han X., Ouyang Z., Sun G., Sui H., Thomas R.L., 2000, Infrared imaging of defects heated by a sonic pulse, Rev. of Sci. Inst., Vol. 71(6), p.2418–2421.

DOI: 10.1063/1.1150630

Google Scholar

[10] Han X., Favro L.D., Ouyang Z., Thomas R.L., 2002, Recent Developments in Thermosonic Crack Detection. Review of Progress in Quantitative Nondestructive Evaluation, Vol. 21, pp.552-557.

Google Scholar

[11] Shepard S.M., Ahmed T., Lhota J.R., 2004, Experimental considerations in vibrothermography. Proceedings of SPIE, Vol. 5405, pp.332-335.

Google Scholar

[12] Abbasi W. A., Metala M. J., 2008, Recent Advances in NDE Technologies for Turbines and Generators, 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China.

Google Scholar

[13] Bolu G., Gachagan A., Pierce G., Harvey G., 2010, Reliable thermosonic inspection of aero engine turbine blades. Insight - Non-Destructive Testing and Condition Monitoring, Vol. 52(9), pp.488-493.

DOI: 10.1784/insi.2010.52.9.488

Google Scholar

[14] Zweschper T., Dillenz A., Riegert G., Scherling D., Busse G., 2003, Ultrasound excited thermography using frequency modulated elastic waves. Insight-Non-Destructive Testing and Condition Monitoring, Vol. 45(3), p.178–182.

DOI: 10.1784/insi.45.3.178.53162

Google Scholar

[15] Mian A., Han X., Islam S., Newaz G., 2004, Fatigue damage detection in graphite/epoxy composites using sonic infrared imaging technique. Composites Science and Technology, Vol. 64(5), p.657–666.

DOI: 10.1016/j.compscitech.2003.07.005

Google Scholar

[16] Pieczonka L., Szwedo M., Uhl T., 2009, Detection of structural damages using vibrothermography. IWSHM 7th International Workshop on Structural Health Monitoring, Stanford, CA.

Google Scholar

[17] Han X., Favro L. D., and Thomas R. L., 2011, Sonic IR Imaging of delaminations and disbonds in composites, Journal of Physics D: Applied Physics, Vol. 44(3).

DOI: 10.1088/0022-3727/44/3/034013

Google Scholar

[18] Han X., Islam M.S., Newaz G., Favro L.D., Thomas R.L., 2005, Finite-element modelling of acoustic chaos to sonic infrared imaging. Journal of Applied Physics, Vol. 98.

DOI: 10.1063/1.1947382

Google Scholar

[19] Han X., Islam S., Newaz G., Favro L.D., Thomas R.L., 2006, Finite element modelling of the heating of cracks during sonic infrared imaging. Journal of Applied Physics, Vol. 99.

DOI: 10.1063/1.2189023

Google Scholar

[20] Plum R., Ummenhofer T., 2010, Structural-thermal FE simulation of vibration and heat generation of cracked steel plates due to ultrasound excitation used for vibrothermography. 10th International Conference on Quantitative InfraRed Thermography, Québec (Canada).

DOI: 10.3166/qirt.8.201-220

Google Scholar

[21] Saboktakin A., Ibarra-Castanedo C., Bendada A., Maldague X., 2010, Finite element analysis of heat generation in ultrasonic thermography, 10th International Conference on Quantitative InfraRed Thermography, Quebec.

DOI: 10.21611/qirt.2010.117

Google Scholar

[22] Mian A., Newaz G., Han X., Mahmood T., Saha C., 2004, Response of sub-surface fatigue damage under sonic load – a computational study. Composites Science and Technology, Vol. 64(9), pp.1115-1122.

DOI: 10.1016/j.compscitech.2003.08.009

Google Scholar

[23] Pieczonka L., Staszewski W.J., Aymerich F., Uhl T., Szwedo M., 2010, Numerical simulations for impact damage detection in composites using vibrothermography. IOP Conf. Series: Materials Science and Engineering, Vol. 10(012062).

DOI: 10.1088/1757-899x/10/1/012062

Google Scholar

[24] Mabrouki F., Thomas M., Genest M., Fahr A., 2009, Frictional heating model for efficient use of vibrothermography. NDT & E International, Vol. 42, pp.345-52.

DOI: 10.1016/j.ndteint.2009.01.012

Google Scholar

[25] Mabrouki F., Thomas M., Genest M., Fahr A., 2010, Numerical modeling of vibrothermography based on plastic deformation. NDT & E International, Vol. 43(6), pp.476-483.

DOI: 10.1016/j.ndteint.2010.05.002

Google Scholar

[26] Holland S.D., Uhl C., Ouyang Z., Bantel T., Li M., Meeker W. Q., Lively J., Brasche L., Eisenmann D., 2011, Quantifying the vibrothermographic effect, NDT & E International, Vol. 44(8), p.775–782.

DOI: 10.1016/j.ndteint.2011.07.006

Google Scholar

[27] Renshaw J., Chen J.C., Holland S.D., Thompson R.B., 2011, The sources of heat generation in vibrothermography, NDT & E International.

Google Scholar

[28] Szwedo M., Pieczonka Ł., Uhl T., 2011, Image processing technique for vibrothermographic field tests, Proceedings of the 8th International Workshop on Structural Health Monitoring 2011, Stanford, September 13–15, (2011).

Google Scholar

[29] MONIT SHM Sp. z o. o., http: /www. monitshm. com/, (2012).

Google Scholar