[1]
Randall R. B., 2010, Vibration-based Condition Monitoring: Industrial, Automotive andAerospace Applications, John Wiley and Sons.
Google Scholar
[2]
Inman D. J., Farrar C. R., Lopes Junior V., Steffen Junior V. (Eds. ), 2005, Damage prognosis for aerospace, civil and mechanical systems, John Wiley & Sons.
DOI: 10.1002/0470869097
Google Scholar
[3]
Staszewski W.J., Boller C., Tomlinson G.R. (Eds. ). 2003, Health Monitoring of AerospaceStructures. John Wiley & Sons.
Google Scholar
[4]
Fritzen C. -P., 2005, Vibration-Based Structural Health Monitoring – Concepts and Applications, Key Engineering Materials, Vol. 293-294, pp.3-20.
DOI: 10.4028/www.scientific.net/kem.293-294.3
Google Scholar
[5]
Maldague X., 2001, Theory and practice of infrared technology for nondestructive testing. JohnWiley & Sons, 684 p.
Google Scholar
[6]
Shepard S., 2007, Back to Basics: Thermography of Composites. ASNT Materials Evaluation, Vol. 65(7), pp.690-696.
Google Scholar
[7]
Henneke E.G., Reifsnider K.L., Stinchcomb W.W., 1979, Thermography – An NDI Method for Damage Detection, J. Metals, Vol. 31(9), p.11–15.
DOI: 10.1007/bf03354475
Google Scholar
[8]
Reifsnider K.L., Henneke E.G., Stinchcomb W.W., 1980, The Mechanics of Vibrothermography, Mechanics of Nondestructive Testing, Plenum Press, New York, p.249–276.
DOI: 10.1007/978-1-4684-3857-4_12
Google Scholar
[9]
Favro L.D., Han X., Ouyang Z., Sun G., Sui H., Thomas R.L., 2000, Infrared imaging of defects heated by a sonic pulse, Rev. of Sci. Inst., Vol. 71(6), p.2418–2421.
DOI: 10.1063/1.1150630
Google Scholar
[10]
Han X., Favro L.D., Ouyang Z., Thomas R.L., 2002, Recent Developments in Thermosonic Crack Detection. Review of Progress in Quantitative Nondestructive Evaluation, Vol. 21, pp.552-557.
Google Scholar
[11]
Shepard S.M., Ahmed T., Lhota J.R., 2004, Experimental considerations in vibrothermography. Proceedings of SPIE, Vol. 5405, pp.332-335.
Google Scholar
[12]
Abbasi W. A., Metala M. J., 2008, Recent Advances in NDE Technologies for Turbines and Generators, 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China.
Google Scholar
[13]
Bolu G., Gachagan A., Pierce G., Harvey G., 2010, Reliable thermosonic inspection of aero engine turbine blades. Insight - Non-Destructive Testing and Condition Monitoring, Vol. 52(9), pp.488-493.
DOI: 10.1784/insi.2010.52.9.488
Google Scholar
[14]
Zweschper T., Dillenz A., Riegert G., Scherling D., Busse G., 2003, Ultrasound excited thermography using frequency modulated elastic waves. Insight-Non-Destructive Testing and Condition Monitoring, Vol. 45(3), p.178–182.
DOI: 10.1784/insi.45.3.178.53162
Google Scholar
[15]
Mian A., Han X., Islam S., Newaz G., 2004, Fatigue damage detection in graphite/epoxy composites using sonic infrared imaging technique. Composites Science and Technology, Vol. 64(5), p.657–666.
DOI: 10.1016/j.compscitech.2003.07.005
Google Scholar
[16]
Pieczonka L., Szwedo M., Uhl T., 2009, Detection of structural damages using vibrothermography. IWSHM 7th International Workshop on Structural Health Monitoring, Stanford, CA.
Google Scholar
[17]
Han X., Favro L. D., and Thomas R. L., 2011, Sonic IR Imaging of delaminations and disbonds in composites, Journal of Physics D: Applied Physics, Vol. 44(3).
DOI: 10.1088/0022-3727/44/3/034013
Google Scholar
[18]
Han X., Islam M.S., Newaz G., Favro L.D., Thomas R.L., 2005, Finite-element modelling of acoustic chaos to sonic infrared imaging. Journal of Applied Physics, Vol. 98.
DOI: 10.1063/1.1947382
Google Scholar
[19]
Han X., Islam S., Newaz G., Favro L.D., Thomas R.L., 2006, Finite element modelling of the heating of cracks during sonic infrared imaging. Journal of Applied Physics, Vol. 99.
DOI: 10.1063/1.2189023
Google Scholar
[20]
Plum R., Ummenhofer T., 2010, Structural-thermal FE simulation of vibration and heat generation of cracked steel plates due to ultrasound excitation used for vibrothermography. 10th International Conference on Quantitative InfraRed Thermography, Québec (Canada).
DOI: 10.3166/qirt.8.201-220
Google Scholar
[21]
Saboktakin A., Ibarra-Castanedo C., Bendada A., Maldague X., 2010, Finite element analysis of heat generation in ultrasonic thermography, 10th International Conference on Quantitative InfraRed Thermography, Quebec.
DOI: 10.21611/qirt.2010.117
Google Scholar
[22]
Mian A., Newaz G., Han X., Mahmood T., Saha C., 2004, Response of sub-surface fatigue damage under sonic load – a computational study. Composites Science and Technology, Vol. 64(9), pp.1115-1122.
DOI: 10.1016/j.compscitech.2003.08.009
Google Scholar
[23]
Pieczonka L., Staszewski W.J., Aymerich F., Uhl T., Szwedo M., 2010, Numerical simulations for impact damage detection in composites using vibrothermography. IOP Conf. Series: Materials Science and Engineering, Vol. 10(012062).
DOI: 10.1088/1757-899x/10/1/012062
Google Scholar
[24]
Mabrouki F., Thomas M., Genest M., Fahr A., 2009, Frictional heating model for efficient use of vibrothermography. NDT & E International, Vol. 42, pp.345-52.
DOI: 10.1016/j.ndteint.2009.01.012
Google Scholar
[25]
Mabrouki F., Thomas M., Genest M., Fahr A., 2010, Numerical modeling of vibrothermography based on plastic deformation. NDT & E International, Vol. 43(6), pp.476-483.
DOI: 10.1016/j.ndteint.2010.05.002
Google Scholar
[26]
Holland S.D., Uhl C., Ouyang Z., Bantel T., Li M., Meeker W. Q., Lively J., Brasche L., Eisenmann D., 2011, Quantifying the vibrothermographic effect, NDT & E International, Vol. 44(8), p.775–782.
DOI: 10.1016/j.ndteint.2011.07.006
Google Scholar
[27]
Renshaw J., Chen J.C., Holland S.D., Thompson R.B., 2011, The sources of heat generation in vibrothermography, NDT & E International.
Google Scholar
[28]
Szwedo M., Pieczonka Ł., Uhl T., 2011, Image processing technique for vibrothermographic field tests, Proceedings of the 8th International Workshop on Structural Health Monitoring 2011, Stanford, September 13–15, (2011).
Google Scholar
[29]
MONIT SHM Sp. z o. o., http: /www. monitshm. com/, (2012).
Google Scholar