Structural Characteristics and Mechanical Properties of Biomedical Porous Ti-10Mo Alloy Fabricated by Selective Laser Sintering

Article Preview

Abstract:

Ti-Mo alloy is one of the most prospective metallic biomaterials for implant application because of its low elastic modulus, high corrosion resistance and tissue compatibility. A complex-shaped porous Ti-10Mo alloy from a mixture of elemental metal powders and polymer binders was processed by selective laser sintering forming, followed by thermal debinding and sintering in vacuum. The effects of processing parameters on structural characteristics and mechanical properties were studied. The results indicate that the pore characteristic parameters, matrix microstructure and mechanical properties strongly depend on the sintering temperature. Specimens sintered at 1100 °C exhibit a higher porosity of 52.41%, and possess many three-dimensionally interconnected pores with an average size of 200 μm, and the matrix is dominated by α and β phases, and meanwhile the alloy exhibits a compressive yield strength of 95.59 MPa and an elastic modulus of 4.89 GPa at room temperature. With the rise in sintering temperature, both the porosity and the average pore size of specimens gradually decrease, and the interconnected pores tend to be closed. Specimens sintered at 1400 °C are characterized by a porosity of 26.32% and an average pore size of 60 μm with a compressive yield strength of 440 MPa and an elastic modulus of 35.26 GPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

234-241

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Balazic, J. Kopac, M.J. Jackson, W. Ahmed, Review: titanium and titanium alloy applications in medicine, Int. J. Nano and Biomaterials 1 (2007) 3-34.

DOI: 10.1504/ijnbm.2007.016517

Google Scholar

[2] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants–A review, Prog. Mater. Sci. 54 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[3] Y.L. Zhou, D.M. Luo, Corrosion behavior of Ti–Mo alloys cold rolled and heat treated, J. Alloys Compd. 509 (2011) 6267-6272.

DOI: 10.1016/j.jallcom.2011.03.045

Google Scholar

[4] M.M. Dewidar, K.A. Khalil, J.K. Lim, Processing and mechanical properties of porous 316L stainless steel for biomedical applications, Trans. Nonferrous Met. Soc. China 17 (2007) 468-473.

DOI: 10.1016/s1003-6326(07)60117-4

Google Scholar

[5] H.I. Bakan, A novel water leaching and sintering process for manufacturing highly porous stainless steel, Scripta Mater. 55 (2006) 203-206.

DOI: 10.1016/j.scriptamat.2006.03.039

Google Scholar

[6] I.H. Oh, N. Nomura, N. Masahashi, S. Hanada, Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta Mater. 49 (2003) 1197-1202.

DOI: 10.1016/j.scriptamat.2003.08.018

Google Scholar

[7] Z. Esen, S. Bor, Characterization of Ti-6Al-4V alloy foams synthesized by space holder technique, Mater. Sci. Eng., A 528 (2011) 3200-3209.

DOI: 10.1016/j.msea.2011.01.008

Google Scholar

[8] C.L. Chu, C.Y. Chung, P. H. Lin, S.D. Wang, Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis, Mater. Sci. Eng., A 366 (2004) 114-119.

DOI: 10.1016/j.msea.2003.08.118

Google Scholar

[9] Y.H. Li, L. J. Rong, Y. Y. Li, Pore characteristics of porous NiTi alloy fabricated by combustion synthesis, J. Alloys Compd. 325 (2001) 259-262.

DOI: 10.1016/s0925-8388(01)01382-2

Google Scholar

[10] D.Y. Yang, H.P. Shao, Z.M. Guo, T. Lin, L.P. Fan, Preparation and properties of biomedical porous titanium alloys by gelcasting, Biomed. Mater. 6 (2011) 1-8.

DOI: 10.1088/1748-6041/6/4/045010

Google Scholar

[11] Y. Li, Z.M. Guo, J.J. Hao, S.B. Ren, Porosity and mechanical properties of porous titanium fabricated by gelcasting, Rare Met. 27 (2008) 282-286.

DOI: 10.1016/s1001-0521(08)60130-8

Google Scholar

[12] S. Upcraft, R. Fletcher, The rapid prototyping technologies, Assembly Autom. 23 (2003) 318-330.

DOI: 10.1108/01445150310698634

Google Scholar

[13] S. Kumar, Selective Laser Sintering: A Qualitative and Objective Approach, JOM. 55 (2003) 43-47.

DOI: 10.1007/s11837-003-0175-y

Google Scholar

[14] K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, W.S. Gui, W.S. Tan, F.E. Wiria, Selective laser sintering of biocompatible polymers for applications in tissue engineering, Bio-Med. Mater. Eng. 15 (2005) 113-124.

Google Scholar

[15] Y. Zhang, L. Hao, M.M. Savalani, R.A. Harris, K.E. Tanner, Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite filled polymeric composites, J. Biomed. Mater. Res., A 86 (2008) 607-616.

DOI: 10.1002/jbm.a.31622

Google Scholar

[16] S. Eosoly, D. Brabazon, S. Lohfeld, L. Looney, Selective laser sintering of hydroxyapatite/ poly-ε-caprolactone scaffolds, Acta Biomater. 6 (2010) 2511-2517.

DOI: 10.1016/j.actbio.2009.07.018

Google Scholar

[17] W.Y. Zhou, S.H. Lee, M. Wang, W. L. Cheung, W.Y. Ip, Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide) /carbonated hydroxyapatite nanocomposite microspheres, J. Mater. Sci: Mater. Med. 19 (2008) 2535-254.

DOI: 10.1007/s10856-007-3089-3

Google Scholar

[18] F.E. Wiria, K.F. Leong, C.K. Chua, Y. Liu, Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication by selective laser sintering, Acta Biomater. 3 (2007) 1–12.

DOI: 10.1016/j.actbio.2006.07.008

Google Scholar

[19] M. Thieme, K.P. Wieters, F. Bergner, D. Scharnweber, H. Worch, J. Ndop, T.J. Kim, W. Grill, Titanium powder sintering for preparation of a porous FGM destined as a skeletal replacement implant, Mater. Sci. Forum. 308 (1999) 374-382.

DOI: 10.4028/www.scientific.net/msf.308-311.374

Google Scholar

[20] C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, Processing of biocompatible porous Ti and Mg, Scripta Mater. 45 (2001) 1147-1153.

DOI: 10.1016/s1359-6462(01)01132-0

Google Scholar

[21] B.V. Krishna, S. Bose, A. Bandyopadhyay, Low stiffness porous Ti structures for load-bearing implants, Acta Biomater. 3 (2007) 997-1006.

DOI: 10.1016/j.actbio.2007.03.008

Google Scholar