Multi-Walled Carbon Nanotubes Reinforced Titanium Composites via Powder Metallurgy Process

Article Preview

Abstract:

Un-bundled multi-walled carbon nanotubes (MWCNTs) were coated on titanium powder surface by using zwitterionic surfactant solution and mixing process, and their CNT/Ti composite powders were consolidated into full-dense materials by spark plasma sintering and the following hot extrusion process in solid-state. Wrought titanium powder metallurgy (PM) composites containing CNTs revealed extreme increment of yield stress and tensile strength of 85% and 50%, respectively, compared to conventional PM titanium with no reinforcement, while they had enough high ductility. The mechanical improvement was mainly due to dispersion strengthening effect of CNTs and in-situ formed TiC fine particles and a small mount of carbon solid solution into Ti matrix. In addition, the control of grain growth was promoted by TiC dispersoids during SPS, and contributed to their strengthening behavior. Furthermore, high-temperature tensile strength less than 673K of PM pure titanium materials was also obviously improved by the pinning effect of TiC particles dispersed at grain boundaries. In this paper, microstructural and mechanical properties of powder metallurgy titanium composites would be introduced in detail.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-268

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, (1994).

Google Scholar

[2] J.C. Williams, E.A. Starke Jr., Progress in Structural Materials for Aerospace Systems, Acta Mater. 51 (2003) 5775-5799.

Google Scholar

[3] C. Leyens, Titanium and Titanium alloys, Wiley-VCH, Weinheim, (2003).

Google Scholar

[4] S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, H.L. Fraser, x-Assisted nucleation and growth of a precipitates in the Ti–5Al–5Mo–5V–3Cr–0. 5Fe b titanium alloy, Acta Materialia 57 (2009) 2136–2147.

DOI: 10.1016/j.actamat.2009.01.007

Google Scholar

[5] Fanning JC. J. Mat. Eng. Perf. 14 (2005) 788-791.

Google Scholar

[6] O.M. Ivasishin, D.G. Savvakin, V.S. Moxson, K.A. Bondareva, F.H. (Sam) Froes, Materials Technology, 17 (2002) 20 – 25.

Google Scholar

[7] O.M. Ivasishin, D. Eylon, V.I. Bondarchuk, D.G. Savvakin, Diffusion during Powder Metallurgy Synthesis of Titanium Alloys, Defect and Diffusion Forum 277 (2008) 177-185.

DOI: 10.4028/www.scientific.net/ddf.277.177

Google Scholar

[8] D.B. Gundel, F.E. Wawner, Experimental and theoretical assessment of the longitudinal tensile strength of unidirectional SiC-fiber/titanium-matrix composites, Comp. Sci. Tech., 57 (1997) 471-481.

DOI: 10.1016/s0266-3538(96)00163-7

Google Scholar

[9] C. Even, C. Arvieu, J.M. Quenisset, Powder route processing of carbon fibres reinforced titanium matrix composites, Comp. Sci. Tech., 68 (2008) 1273-1281.

DOI: 10.1016/j.compscitech.2007.12.014

Google Scholar

[10] Haibo Feng, Yu Zhou, Dechang Jia, Qingchang Meng, Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering, Comp. Sci. Tech., 64 (2004) 2495-2500.

DOI: 10.1016/j.compscitech.2004.05.013

Google Scholar

[11] J. -P. Salvetat, J. -M. Bonard, N.H. Thomson, A. J. Kulik, L. Forró, W. Benoit, L. Zuppiroli, Mechanical Properties of Carbon Nanotubes, Applied Phys. A, 69 (1999) 255-260.

DOI: 10.1007/s003390050999

Google Scholar

[12] R. S. Ruoff and D. C. Lorents, Mechanical and Thermal Properties of Carbon Nanotubes, Carbon, 33 (1995) 925-930.

DOI: 10.1016/0008-6223(95)00021-5

Google Scholar

[13] S. R. Bakshi, D. Lahiri, A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites – A Review, International Materials Reviews, 55 (2010) 41-64.

DOI: 10.1179/095066009x12572530170543

Google Scholar

[14] K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda and B. Fugetsu, Characteristics of Powder Metallurgy Pure Titanium Matrix Composite Reinforced with Multi-Wall Carbon Nanotubes, Comp. Sci. and Tech. 69 (2009) 1077-1081.

DOI: 10.1016/j.compscitech.2009.01.026

Google Scholar

[15] B. D. Cullity and S. R Stock, Elements of X-Ray Diffraction, 3rd ed., Prentice Hall, USA, (2001).

Google Scholar

[16] F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Ltd., Netherlands, (2004).

Google Scholar

[17] Y. H. Liang, H. Y. Wang, Y. F. Yang, Y. Y. Wang and Q. C. Jiang, Evolution Process of The Synthesis of TiC in The Cu-Ti-C System, J. Alloys and Comp. 452 (2008) 298-303.

DOI: 10.1016/j.jallcom.2006.11.024

Google Scholar

[18] H. Conrad, Effect of Interstitial Solutes on The Strength and Ductility of Titanium, Progress in Mater. Sci. 26 (1981) 123-403.

DOI: 10.1016/0079-6425(81)90001-3

Google Scholar

[19] R. M. Aikin, Jr., The Mechanical Properties of In-Situ Composites, JOM, 49 (1997) 35-39.

Google Scholar

[20] Y. Kobayashi, Y. Tanaka, K. Matsuoka, K. Kinoshita, Y. Miyamoto and H. Murata, Effect of Forging Ratio and Grain Size on Tensile and Fatigue Strength of Pure Titanium Forgings, J. the Society of Mater. Sci. Japan, 54 (2005) 66-72 (in Japanese).

DOI: 10.2472/jsms.54.66

Google Scholar

[21] C. Ouchi, H. Iizumi and S. Mitao, Effects of Ultra-High Purification and Addition of Interstitial Elements on Properties of Pure Titanium and Titanium Alloy, Mater. Sci. Eng. A, 243 (1998) 186-195.

DOI: 10.1016/s0921-5093(97)00799-5

Google Scholar

[22] T. Threrujirapapong, T. Mimoto, K. Kondoh, J. Umeda and B. Fugetsu, Effects of SPS Parameters on The Mechanical Properties and Microstructures of Titanium Reinforced with Multi-wall Carbon Nanotubes Produced by Hot Extrusion, TMS 2011 140th Annual Meeting & Exhibition, Supplemental Proceedings, vol. 2, (2011).

DOI: 10.1002/9781118062142.ch99

Google Scholar

[23] W. F. Hosford, Mechanical Behavior of Materials, Cambridge University Press, UK (2005).

Google Scholar

[24] Y. Estrin, G. Gottstein, L. S. Shviddlerman, Diffusion Controlled Creep in Nanocrystalline Materials under Grain Growth, Scripta Mater. 50 (2004) 993-997.

DOI: 10.1016/j.scriptamat.2004.01.002

Google Scholar

[25] M. J. R. Barboza, E. A. C. Perez, M. M. Medeiros, D. A. P. Reis, M. C. A. Nono, F. Piorino Neto and C. R. M. Silva, Creep Behavior of Ti-6Al-4V and A Comparison with Titanium Matrix Composites, Mater. Sci. Eng. A, 428 (2006) 319-326.

DOI: 10.1016/j.msea.2006.05.089

Google Scholar

[26] B. Verlinde, J. Driver, I. Samajdar and R. D. Doherty, Thermo-Mechanical Processing of Metallic Materials, 1st ed., Pergamon, Netherlands (2007).

Google Scholar