[1]
E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, (1994).
Google Scholar
[2]
J.C. Williams, E.A. Starke Jr., Progress in Structural Materials for Aerospace Systems, Acta Mater. 51 (2003) 5775-5799.
Google Scholar
[3]
C. Leyens, Titanium and Titanium alloys, Wiley-VCH, Weinheim, (2003).
Google Scholar
[4]
S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, H.L. Fraser, x-Assisted nucleation and growth of a precipitates in the Ti–5Al–5Mo–5V–3Cr–0. 5Fe b titanium alloy, Acta Materialia 57 (2009) 2136–2147.
DOI: 10.1016/j.actamat.2009.01.007
Google Scholar
[5]
Fanning JC. J. Mat. Eng. Perf. 14 (2005) 788-791.
Google Scholar
[6]
O.M. Ivasishin, D.G. Savvakin, V.S. Moxson, K.A. Bondareva, F.H. (Sam) Froes, Materials Technology, 17 (2002) 20 – 25.
Google Scholar
[7]
O.M. Ivasishin, D. Eylon, V.I. Bondarchuk, D.G. Savvakin, Diffusion during Powder Metallurgy Synthesis of Titanium Alloys, Defect and Diffusion Forum 277 (2008) 177-185.
DOI: 10.4028/www.scientific.net/ddf.277.177
Google Scholar
[8]
D.B. Gundel, F.E. Wawner, Experimental and theoretical assessment of the longitudinal tensile strength of unidirectional SiC-fiber/titanium-matrix composites, Comp. Sci. Tech., 57 (1997) 471-481.
DOI: 10.1016/s0266-3538(96)00163-7
Google Scholar
[9]
C. Even, C. Arvieu, J.M. Quenisset, Powder route processing of carbon fibres reinforced titanium matrix composites, Comp. Sci. Tech., 68 (2008) 1273-1281.
DOI: 10.1016/j.compscitech.2007.12.014
Google Scholar
[10]
Haibo Feng, Yu Zhou, Dechang Jia, Qingchang Meng, Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering, Comp. Sci. Tech., 64 (2004) 2495-2500.
DOI: 10.1016/j.compscitech.2004.05.013
Google Scholar
[11]
J. -P. Salvetat, J. -M. Bonard, N.H. Thomson, A. J. Kulik, L. Forró, W. Benoit, L. Zuppiroli, Mechanical Properties of Carbon Nanotubes, Applied Phys. A, 69 (1999) 255-260.
DOI: 10.1007/s003390050999
Google Scholar
[12]
R. S. Ruoff and D. C. Lorents, Mechanical and Thermal Properties of Carbon Nanotubes, Carbon, 33 (1995) 925-930.
DOI: 10.1016/0008-6223(95)00021-5
Google Scholar
[13]
S. R. Bakshi, D. Lahiri, A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites – A Review, International Materials Reviews, 55 (2010) 41-64.
DOI: 10.1179/095066009x12572530170543
Google Scholar
[14]
K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda and B. Fugetsu, Characteristics of Powder Metallurgy Pure Titanium Matrix Composite Reinforced with Multi-Wall Carbon Nanotubes, Comp. Sci. and Tech. 69 (2009) 1077-1081.
DOI: 10.1016/j.compscitech.2009.01.026
Google Scholar
[15]
B. D. Cullity and S. R Stock, Elements of X-Ray Diffraction, 3rd ed., Prentice Hall, USA, (2001).
Google Scholar
[16]
F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Ltd., Netherlands, (2004).
Google Scholar
[17]
Y. H. Liang, H. Y. Wang, Y. F. Yang, Y. Y. Wang and Q. C. Jiang, Evolution Process of The Synthesis of TiC in The Cu-Ti-C System, J. Alloys and Comp. 452 (2008) 298-303.
DOI: 10.1016/j.jallcom.2006.11.024
Google Scholar
[18]
H. Conrad, Effect of Interstitial Solutes on The Strength and Ductility of Titanium, Progress in Mater. Sci. 26 (1981) 123-403.
DOI: 10.1016/0079-6425(81)90001-3
Google Scholar
[19]
R. M. Aikin, Jr., The Mechanical Properties of In-Situ Composites, JOM, 49 (1997) 35-39.
Google Scholar
[20]
Y. Kobayashi, Y. Tanaka, K. Matsuoka, K. Kinoshita, Y. Miyamoto and H. Murata, Effect of Forging Ratio and Grain Size on Tensile and Fatigue Strength of Pure Titanium Forgings, J. the Society of Mater. Sci. Japan, 54 (2005) 66-72 (in Japanese).
DOI: 10.2472/jsms.54.66
Google Scholar
[21]
C. Ouchi, H. Iizumi and S. Mitao, Effects of Ultra-High Purification and Addition of Interstitial Elements on Properties of Pure Titanium and Titanium Alloy, Mater. Sci. Eng. A, 243 (1998) 186-195.
DOI: 10.1016/s0921-5093(97)00799-5
Google Scholar
[22]
T. Threrujirapapong, T. Mimoto, K. Kondoh, J. Umeda and B. Fugetsu, Effects of SPS Parameters on The Mechanical Properties and Microstructures of Titanium Reinforced with Multi-wall Carbon Nanotubes Produced by Hot Extrusion, TMS 2011 140th Annual Meeting & Exhibition, Supplemental Proceedings, vol. 2, (2011).
DOI: 10.1002/9781118062142.ch99
Google Scholar
[23]
W. F. Hosford, Mechanical Behavior of Materials, Cambridge University Press, UK (2005).
Google Scholar
[24]
Y. Estrin, G. Gottstein, L. S. Shviddlerman, Diffusion Controlled Creep in Nanocrystalline Materials under Grain Growth, Scripta Mater. 50 (2004) 993-997.
DOI: 10.1016/j.scriptamat.2004.01.002
Google Scholar
[25]
M. J. R. Barboza, E. A. C. Perez, M. M. Medeiros, D. A. P. Reis, M. C. A. Nono, F. Piorino Neto and C. R. M. Silva, Creep Behavior of Ti-6Al-4V and A Comparison with Titanium Matrix Composites, Mater. Sci. Eng. A, 428 (2006) 319-326.
DOI: 10.1016/j.msea.2006.05.089
Google Scholar
[26]
B. Verlinde, J. Driver, I. Samajdar and R. D. Doherty, Thermo-Mechanical Processing of Metallic Materials, 1st ed., Pergamon, Netherlands (2007).
Google Scholar