Protectivity and Adhesive Strength of Zinclipscombite Coating on 316L Stainless Steel

Abstract:

Article Preview

Zinclipscombite (ZnFe3+2(PO4)2(OH)2) coating layer was prepared on 316L SS. The 316L SS plates were treated using hydrothermal treatment at 200°C for 2, 6 and 24 h. The ZnFe3+2(PO4)2(OH)2 layer strongly attached to the 316L SS surface. The adhesive strength of the coating layer was measured higher than 65.7 ± 3 MPa. The surface observation and element analysis indicated that the 316L SS plates were covered with ZnFe3+2(PO4)2(OH)2 coating layer after hydrothermal treatment. Linear voltammograms for treated sample at 200°C for 24 h showed higher corrosion resistance. The ICP results proved protective property for the zinclipscombite coating agains PBS solution.

Info:

Periodical:

Key Engineering Materials (Volumes 529-530)

Main Theme:

Edited by:

Kunio Ishikawa and Yukihide Iwamoto

Pages:

251-254

Citation:

A. Valanezhad et al., "Protectivity and Adhesive Strength of Zinclipscombite Coating on 316L Stainless Steel", Key Engineering Materials, Vols. 529-530, pp. 251-254, 2013

Online since:

November 2012

Export:

Price:

$38.00

[1] L. Pramatarova, E. Pecheva, R. Presker, M.T. Pham, M.F. Maitz, M. Stutzmann, Eur Cell Mater 9 (2005) 9-12.

[2] M. Wei, A.J. Ruys, M.V. Swain, S.H. Kim, B.K. Milthorpe, C.C. Sorrell, Journal of Materials Science-Materials in Medicine 10 (1999) 401-409.

DOI: https://doi.org/10.1023/a:1008923029945

[3] C.C. Shih, C.M. Shih, Y.Y. Su, M.S. Chang, S.J. Lin, Applied Surface Science 219 (2003) 347-362.

[4] C.C. Shih, C.M. Shih, Y.Y. Su, L.H.J. Su, M.S. Chang, S.J. Lin, Corrosion Science 46 (2004) 427-441.

[5] S.R. Paital, N.B. Dahotre, Materials Science & Engineering R-Reports 66 (2009) 1-70.

[6] S.K. Pandey, L. Werner, D.J. Apple, M. Kaskaloglu, ophthalmology 109 (2002) 2042-(2051).

[7] J. Davis, Handbook of Materials for Medical Devices, ASM International, Ohio, (2003).

[8] B. Ratner, A. Hoffman, A. Schoen, J. Lemons, An Introduction to Materials in Medicine, Elsevier Academic Press, San Diego, (2004).

[9] H.S. Dobbs, M.J. Minski, Biomaterials 1 (1980) 193-198.

[10] N. Hallab, K. Merritt, J.J. Jacobs, J Bone Joint Surg Am 83-A (2001) 428-436.

[11] G. Schmalz, D. Arenholt-Bindslev, Biocompatibility of Dental Materials, Springer, Berlin, (2009).

[12] W.R. Hubler, Jr., W.R. Hubler, Sr., Contact Dermatitis 9 (1983) 377-383.

[13] N.K. Veien, E. Borchorst, T. Hattel, G. Laurberg, Contact Dermatitis 30 (1994) 210-213.

[14] S. Morais, J.P. Sousa, M.H. Fernandes, G.S. Carvalho, J.D. de Bruijn, C.A. van Blitterswijk, Biomaterials 19 (1998) 999-1007.

DOI: https://doi.org/10.1016/s0142-9612(97)00234-2

[15] S.M.A. Shibli, A.C. Jayalekshmi, Applied Surface Science 254 (2008) 4103-4110.

[16] A. Valanezhad, K. Tsuru, M. Maruta, G. Kawachi, S. Matsuya, K. Ishikawa, Surface & Coatings Technology 205 (2010) 2538-2542.

DOI: https://doi.org/10.1016/j.surfcoat.2010.09.050

[17] A. Valanezhad, K. Tsuru, M. Maruta, G. Kawachi, S. Matsuya, K. Ishikawa, Bioceramics 22 (2009) 265-268.

[18] A. Valanezhad, K. Tsuru, M. Maruta, S. Matsuya, K. Ishikawa, Key Engineering Materials 493-494 (2011) 495-498.

DOI: https://doi.org/10.4028/www.scientific.net/kem.493-494.495