Formation of Hydroxyapatite on Nickel-Free High-Nitrogen Stainless Steel by Chemical Solution Deposition Method in Neutral/Alkaline Solution

Article Preview

Abstract:

Calcium phosphate (CaP) was formed on glutamic acid-modified nickel-free high-nitrogen stainless steel (HNS) by a chemical solution deposition method in neutral/alkaline solution. Modification of glutamic acid on the surface of HNS was performed using trisuccinimidyl citrate (TSC) as a linker. The glutamic acid-derived carboxyl groups introduced on HNS initiated rapid nucleation of CaP during each treatment at pH 7.3 or 8.9. X-ray diffraction analysis and Fourier transform infrared spectra showed each CaP deposited on glutamic acid-immobilized HNS after 24 hrs was identified as low-crystallinity calcium-deficient carbonate-containing hydroxyapatite (HAp). A significant difference in the microstructure between the two pH values was observed; HAp deposited at pH 7.3 was composed of plate-like crystals, whereas that at pH 8.9 was chestnut-like crystals. Therefore, the pH value of the solution played an effective role in controlling the microstructure of HAp deposited on glutamic acid-immobilized HNS.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 529-530)

Pages:

237-242

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Sagara, H. Uno, Y. Katada, T. Kodama, Tetsu To Hagane-J Iron Steel Inst Jpn 88 (2002) 672-677.

Google Scholar

[2] Y. Katada, M. Sagara, Y. Kobayashi, T. Kodama, Mater Manuf Process 19 (2004) 19-30.

Google Scholar

[3] N. Maruyama, M. Sanbe, Y. Katada, K. Kanazawa, Materials Transactions 50 (2009) 2615-2622.

Google Scholar

[4] M. Sasaki, M. Inoue, Y. Katada, T. Taguchi, Colloid Surf B-Biointerfaces 92 (2012) 1-8.

Google Scholar

[5] W.L. Jaffe, D.F. Scott, J Bone Jt Surg 78 (1996) 1918-(1934).

Google Scholar

[6] M. Ogawa, K. Hiraoka, Y. Katada, M. Sagara, S. Tsukamoto, ICIJ Int 42 (2002) 1391-1398.

Google Scholar

[7] T. Nakazawa, S. Hoshino, K. Yamaguchi, Y. Katada, Tetsu To Hagane-J Iron Steel Inst Jpn 93 (2007) 240-246.

Google Scholar

[8] Y. Fujishiro, H. Yabuki H, K. Kawamura, T. Sato, A. Okuwaki, J Chem Technol Biotechnol 57 (1993) 349-353.

Google Scholar

[9] M. Tomozawa, S. Hiromoto, Acta Mater 59 (2011) 355-363.

Google Scholar

[10] M. Tanahashi, T. Matsuda, J Biomed Mater Res 34 (1997) 305-315.

Google Scholar

[11] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388 (1997) 431-432.

DOI: 10.1038/41233

Google Scholar

[12] A. Nosaka, E. Kojima, T. Fujiwara, H. Yagi, H. Akutsu, Y. Nosaka. J Phys Chem B 107 (2003) 12042-12044.

DOI: 10.1021/jp035526v

Google Scholar

[13] K. Uosaki, T. Yano, S. Nihonyanagi, J Phys Chem B 108 (2004) 19086-19088.

Google Scholar

[14] M. Inoue, M. Sasaki, Y. Katada, T. Taguchi, Colloid Surf B-Biointerfaces 88 (2011) 260-264.

Google Scholar

[15] W.E. Brown, J.P. Smith, J.R. Lehr, A.W. Frazier, Nature 196 (1962) 1050-1055.

Google Scholar

[16] A. Stoch, W. Jastrzebski, A. Brozek, B. Trybalska, M. Cichocinska, E. Szarawara, J Mol Struct 512 (1999) 287-294.

Google Scholar

[17] Narasaraju TSB, Phebe DE, J Mater Sci 31 (1996) 1-21.

Google Scholar