A Novel Approach to Prepare Hydroxyapatite-Coated Biodegradable Polymer Microspheres Loaded with Magnetic Fe3O4 via Nanoparticle-Stabilized Emulsions

Article Preview

Abstract:

HAp-nanoparticle-coated biodegradable polymer microspheres loaded with magnetic Fe3O4 particles can be successfully prepared by evaporating volatile oil (dichloromethane) from HAp-nanoparticle-stabilized oil droplets containing biodegradable polymer and Fe3O4 particles without any molecular surfactants or polymeric stabilizers. In this study it was found that the hydrophobic surface modification for the Fe3O4 particles was a key factor to prepare stable HAp-nanoparticle-stabilized oil droplets (and HAp-nanoparticle-coated polymer microspheres) loaded with magnetic Fe3O4 particles.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 529-530)

Pages:

223-228

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Ugelstad, P. Stenstad, L. Kilaas, W.S. Prestvik, R. Herje, A. Bererge, E. Hornes, Monodisperse magnetic polymer particles, Blood Purif. 11 (1993) 349-369.

DOI: 10.1159/000170129

Google Scholar

[2] A. Elaïssari, R. Veyret, B. Mandrand, J. Chatterjee, Surfactant Science Series 116: Colloidal Biomolecules, Biomaterials, and Biomedical Applications, in A. Elaissari (Ed. ) Marcel Dekker, New York, 2004, pp.1-26.

DOI: 10.1201/9780203912843.ch1

Google Scholar

[3] M. Kuhara, H. Takeyama, T. Tanaka, T. Matsunaga, Magnetic cell separation using antibody binding with protein A expressed on bacterial magnetic particles, Anal. Chem. 76 (2004) 6207-6213.

DOI: 10.1021/ac0493727

Google Scholar

[4] Y. Namba, M. Usami, O. Suzuki, Highly sensitive electrochemiluminescence immunoassay using the ruthenium chelate-labeled antibody bound on the magnetic micro beads, Anal. Sci. 15 (1999) 1087-1093.

DOI: 10.2116/analsci.15.1087

Google Scholar

[5] A. Elässari, M. Rodrigue, F. Meunier, C. Herve, Hydrophilic magnetic latex for nucleic acid extraction, purification and concentration, J. Magn. Magn. Mater. 225 (2001) 127-133.

DOI: 10.1016/s0304-8853(00)01240-3

Google Scholar

[6] J. Oster, J. Parker, L. À Brassard, Polyvinyl-alcohol-based magnetic beads for rapid and efficient separation of specific or unspecific nucleic acid sequences, J. Magn. Magn. Mater. 225 (2001) 145-150.

DOI: 10.1016/s0304-8853(00)01243-9

Google Scholar

[7] S. Akgöl, Y. Kaçar, A. Denizli, M.Y. Arca, Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres, Food Chem. 74 (2001) 281-288.

DOI: 10.1016/s0308-8146(01)00150-9

Google Scholar

[8] F.Y. Cheng, C.H. Su, Y.S. Yang, C.S. Yeh, C.Y. Tsai, C.L. Wu, M.T. Wu, D.B. Shieh, Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications, Biomaterials 26 (2005) 729-738.

DOI: 10.1016/j.biomaterials.2004.03.016

Google Scholar

[9] J. Chatterjee, M. Bettge, Y. Haik, C. Jen Chen, Synthesis and characterization of polymer encapsulated Cu-Ni magnetic nanoparticles for hyperthermia applications, J. Magn. Magn. Mater. 293 (2005) 303-309.

DOI: 10.1016/j.jmmm.2005.02.024

Google Scholar

[10] J. Ugelstad, A. Berge, T. Ellingsen, R. Schmid, T. -N. Nilsen, P.C. Mork, P. Sienstad, E. Hornes, Ø. Olsvik, Preparation and application of new monosized polymer particles, Prog. Polym. Sci. 17 (1992) 87-161.

DOI: 10.1016/0079-6700(92)90017-s

Google Scholar

[11] F. Caruso, M. Spasova, A. Susha, M. Giersig, R.A. Caruso, Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach, Chem. Mater. 13 (2001) 109-116.

DOI: 10.1021/cm001164h

Google Scholar

[12] E. Sada, S. Katoh, M. Terashima, Performance of an enzyme reactor utilizing a magnetic field, Biotechnol. Bioeng. 22 (1980) 243-246.

DOI: 10.1002/bit.260220120

Google Scholar

[13] A. Kondo, H. Kamura, K. Higashitahi, Development and application of thermo-sensitive magnetic immunomicrospheres for antibody purification, Appl. Microbiol. Biotechnol. 41 (1994) 99-105.

DOI: 10.1007/bf00166089

Google Scholar

[14] S. Lu, J. Forcada, Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization, J. Polym. Sci., Part A: Polym. Chem. 44 (2006) 4187–4203.

DOI: 10.1002/pola.21525

Google Scholar

[15] D. Horak, Magnetic polyglycidylmethacrylate microspheres by dispersion polymerization, J. Polym. Sci., Part A: Polym. Chem. 39 (2001) 3707-3715.

DOI: 10.1002/pola.10000

Google Scholar

[16] R.J. Mumper, U.Y. Ryo, M. Jay, Neutron activated holmium-166-Poly(L-lactic acid) microspheres: A potential agent for the internal radiation therapy of hepatic tumours, J. Nucl. Med. 32 (1991) 2139-2143.

Google Scholar

[17] B. Arechabala, C. Coiffard, P. Rivalland, L.J.M. Coiffard, Y. De Roeck-Holtzhauer, Comparison of cytotoxicity of various surfactants tested on normal human fibroblast cultures using the neutral red test, MTT assay and LDH release, J. Appl. Toxicol. 19 (1999).

DOI: 10.1002/(sici)1099-1263(199905/06)19:3<163::aid-jat561>3.0.co;2-h

Google Scholar

[18] P. -C. Wang, W. -Y. Chiu, C. -F. Lee, T. -H. Young, Synthesis of iron oxide/poly(methyl methacrylate) composite latex particles: Nucleation mechanism and morphology, J. Polym. Sci. Part A: Polym. Chem. 42 (2004) 5695-5705.

DOI: 10.1002/pola.20335

Google Scholar

[19] S. Lu, J. Ramos, J. Forcada, Self-stabilized magnetic polymeric composite nanoparticles by emulsifier-free miniemulsion polymerization, Langmuir 23 (2007) 12893-12900.

DOI: 10.1021/la702281k

Google Scholar

[20] S. Beyaz, T. Tanrisever, H. Kockar, V. Butun, Superparamagnetic latex synthesized by a new route of emulsifier-free emulsion polymerization, J. Appl. Polym. Sci. 121 (2011) 2264-2272.

DOI: 10.1002/app.33895

Google Scholar

[21] S. Fujii, M. Okada, T. Furuzono, Hydroxyapatite nanoparticles as stimulus-responsive particulate emulsifiers and building block for porous materials, J. Colloid Int. Sci. 315 (2007) 287-296.

DOI: 10.1016/j.jcis.2007.06.071

Google Scholar

[22] S. Fujii, M. Okada, H. Sawa, T. Furuzono, Y. Nakamura, Hydroxyapatite nanoparticles as particulate emulsifier: Fabrication of hydroxyapatite-coated biodegradable microspheres, Langmuir 25 (2009) 9759-9766.

DOI: 10.1021/la901100z

Google Scholar

[23] H. Maeda, M. Okada, S. Fujii, Y. Nakamura, T. Furuzono, Pickering-type water-in-oil-in-water multiple emulsions toward multihollow nanocomposite microspheres. Langmuir 26 (2010) 13727-13731.

DOI: 10.1021/la102529d

Google Scholar

[24] M. Okada, H. Maeda, S. Fujii, Y. Nakamura, T. Furuzono, Formation of pickering emulsions stabilized via interaction between nanoparticles dispersed in aqueous phase and polymer end groups dissolved in oil phase, Langmuir 28 (2012) 9405-9412.

DOI: 10.1021/la3015964

Google Scholar

[25] Y. Miwa, S. Fukumoto, H. Koyama, M. Okada, S. Tanaka, T. Shoji, M. Emoto, T. Furuzono, Y. Nishizawa, M. Inaba, Enhancement of cell-therapeutic angiogenesis using a novel type of jnjectable scaffolds of hydroxyapatite-polymer nanocomposite microsheres, PLoS ONE 7 (2012).

DOI: 10.1371/journal.pone.0035199

Google Scholar

[26] X. Liu, M. Okada, H. Maeda, S. Fujii, T. Furuzono, Hydroxyapatite/biodegradable poly(L-lactide-co-e-caprolactone) composite microparticles as injectable scaffolds by a Pickering emulsion route, Acta Biomater. 7 (2011) 821-828.

DOI: 10.1016/j.actbio.2010.08.023

Google Scholar