Enhancement of Calcium Phosphate Formation on Zirconium by Combination of Simple Electrochemical Treatments

Article Preview

Abstract:

Electrochemical surface treatments of micro-arc oxidation (MAO) and following cathodic polarization were performed on zirconium (Zr) disks in this study to enhance the bioactivity of Zr. The surface oxide layers formed with electrochemical treatments on Zr disks were characterized using surface analyses; the calcium phosphate formation on the specimens after immersion in Hanks’ solution was evaluated. As a result, thick calcium phosphate layers formed on only Zr specimens that underwent both MAO treatment with a mixture of calcium glycerophosphate and magnesium acetate and subsequent cathodic polarization treatment with sodium sulfate solution, while no precipitate was observed without treatment. Thus, this technique was confirmed to be a promising method to improve the bioactivity of Zr.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 529-530)

Pages:

565-569

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Hanawa, M. Ota, Calcium phosphate naturally formed on titanium in electrolyte solution, Biomaterials 12 (1991) 767-774.

DOI: 10.1016/0142-9612(91)90028-9

Google Scholar

[2] D.J. Wever, A.G. Veldhuizen, J. de Vries, H.J. Busscher, D.R.A. Uges, J.R. van Horn, Electrochemical and surface characterization of a nickel-titanium alloy, Biomaterials 19 (1998) 761-769.

DOI: 10.1016/s0142-9612(97)00210-x

Google Scholar

[3] T. Hanawa, M. Ota, Characterization of surface film formed on titanium in electrolyte using XPS, Appl. Surf. Sci. 55 (1992) 269-276.

DOI: 10.1016/0169-4332(92)90178-z

Google Scholar

[4] T. Hanawa, O. Okuno, H. Hamanaka, Compositional change in surface of Ti-Zr alloys in artificial bioliquid, J. Jpn. Inst. Metal. 56 (1992) 1168-1173.

DOI: 10.2320/jinstmet1952.56.10_1168

Google Scholar

[5] J.L. Ong, L.C. Lucas, G.N. Raikar, R. Connatser, J.C. Gregory, Spectroscopic characterization of passivated titanium in a physiologic solution, J. Mater. Sci. Mater. Med. 6 (1995) 113-119.

DOI: 10.1007/bf00120418

Google Scholar

[6] Suyalatu, N. Nomura, K. Oya, Y. Tanaka, R. Kondo, H. Doi, Y. Tsutsumi, T. Hanawa, Microstructure and magnetic susceptibility of as-cast Zr-Mo alloys, Acta Biomater. 6 (2010) 1033-1038.

DOI: 10.1016/j.actbio.2009.09.013

Google Scholar

[7] N. Nomura, Y. Tanaka, Suyalatu, R. Kondo, H. Doi, Y. Tsutsumi, T. Hanawa, Effects of phase constitution of Zr-Nb alloys on their magnetic susceptibilities, Mater. Trans. 50 (2009) 2466-2472.

DOI: 10.2320/matertrans.m2009187

Google Scholar

[8] T. Hanawa, S. Hiromoto, K. Asami, O. Okuno, K. Asaoka, Surface oxide films on titanium alloys regenerated in Hanks' solution, Mater. Trans. 43 (2002) 3000-3004.

DOI: 10.2320/matertrans.43.3000

Google Scholar

[9] Y. Tsutsumi, D. Nishimura, H. Doi, N. Nomura, T. Hanawa, Difference in surface reactions between titanium and zirconium in Hanks' solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization, Mater. Sci. Eng. C 29 (2009).

DOI: 10.1016/j.msec.2009.01.016

Google Scholar

[10] T. Hanawa, Biofunctionalization of titanium for dental implant, Jpn. Dent. Sci. Rev. 46 (2010) 93-101.

Google Scholar

[11] H. Ishizawa, M. Ogino, Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment, J. Biomed. Mater. Res. 29 (1995) 1071-1079.

DOI: 10.1002/jbm.820290907

Google Scholar

[12] Y. Han, S.H. Hong, K.W. Xu, Structure and in vitro bioactivity of titania-based film by micro-arc oxidation, Surf. Coat. Technol. 168 (2003) 249-258.

DOI: 10.1016/s0257-8972(03)00016-1

Google Scholar

[13] F. Liu, F.P. Wang, T. Shimizu, K. Igarashi, L.C. Zhao, Formation of hydroxyapatite on Ti–6Al–4V alloy by microarc oxidation and hydrothermal treatment, Surf. Coat. Technol. 199 (2005) 220-224.

DOI: 10.1016/j.surfcoat.2004.10.146

Google Scholar

[14] W. Ma, J.H. Wei, Y.Z. Li, X.M. Wang, H.Y. Shi, S. Tsutsumi, D.H. Li, Histological evaluation and surface componential analysis of modified micro-arc oxidation-treated titanium implants, J. Biomed. Mater. Res. 86B (2008) 162-169.

DOI: 10.1002/jbm.b.31002

Google Scholar

[15] J.Y. Suh, B.C. Janga, X. Zhu, J.L. Ong, K.H. Kim, Effect of hydrothermally treated anodic oxide films on osteoblast attachment and proliferation, Biomaterials. 24 (2003) 347-355.

DOI: 10.1016/s0142-9612(02)00325-3

Google Scholar

[16] W.W. Son, X. Zhu, H.I. Shin, J.L. Ong, K.H. Kim, In vivo histological response to anodized and anodized/hydrothermally treated titanium implants, J. Biomed. Mater. Res. B Appl. Biomater. 66B (2003) 520-525.

DOI: 10.1002/jbm.b.10042

Google Scholar

[17] Y. Yan, Y. Han, Structure and bioactivity of micro-arc oxidized zirconia films, Surf. Coat. Technol. 201 (2007) 5692-5695.

DOI: 10.1016/j.surfcoat.2006.07.058

Google Scholar

[18] Y. Han, Y. Yan, C. Lu, Ultraviolet-enhanced bioactivity of ZrO2 films prepared by micro-arc oxidation, Thin Solid Films. 517 (2009) 1577-1581.

DOI: 10.1016/j.tsf.2008.09.064

Google Scholar

[19] Y. Yan, Y. Han, C. Lu, The effect of chemical treatment on apatite-forming ability of the macroporous zirconia films formed by micro-arc oxidation, Appl. Surf. Sci. 254 (2008) 4833-4839.

DOI: 10.1016/j.apsusc.2008.01.117

Google Scholar

[20] Y. Tsutsumi, D. Nishimura, H. Doi, N. Nomura, T. Hanawa, Cathodic alkaline treatment of zirconium to give the ability to form calcium phosphate, Acta Biomater. 6 (2010) 4161-4166.

DOI: 10.1016/j.actbio.2010.05.010

Google Scholar

[21] J.Y. Ha, Y. Tsutsumi, H. Doi, N. Nomura, K.H. Kim, T. Hanawa, Enhancement of calcium phosphate formation on zirconium by micro-arc oxidation and chemical treatments, Surf. Coat. Technol. 205 (2011) 4948-4955.

DOI: 10.1016/j.surfcoat.2011.04.079

Google Scholar

[22] Y. Tanaka, E. Kobayashi, S. Hiromoto, K. Asami, H. Imai, T. Hanawa, Calcium phosphate formation on titanium by low-voltage electrolytic treatments , J. Mater. Sci. –Mater. Med. 18 (2007) 797-806.

DOI: 10.1007/s10856-006-0004-2

Google Scholar