Enhanced Photoelectrochemical Performance of Fe-Doped WO3 Film Electrode under Visible Light

Article Preview

Abstract:

WO3 and Fe-doped WO3 thin films were prepared on Indium-Tin Oxide (ITO) glass substrates by a dip-coating. The samples were characterized by photoelectrochemistry, scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-Vis absorption spectroscopy, respectively. The result shows that the doping of Fe influenced absorption performance, and then influenced the catalytic performance. Compared with pure WO3, Fe-doped WO3 exhibited enhanced higher photoelectrochemical(PEC) performance and photocatalytic activity. The effect of doping concentration on the photocurrent was studied. It was found that the photocurrent under visible light displayed the highest values for 2% Fe-WO3 films annealed at 400 °C. The photocatalytic activity of the Fe-doped WO3 was evaluated in the methylene blue(MB) degradation under visible light illumination. The experiments demonstrated that MB could be efficiently degraded using the doped WO3 electrode as the photoanode which showed a higher activity than pure WO3. This provides a novel method for increasing the photon electric conversion efficiency of WO3 thin film electrodes.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 531-532)

Pages:

230-233

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fox, M.A., Dulay, M.T., Heterogeneous photocatalysis, Chem. Rev. 93 (1993) 341-357.

Google Scholar

[2] Chen, S.F., Cao, G.Y., Photocatalytic oxidation of nitrite by sunlight using TiO2 supported on hollow glass microbeads, Sol. Energy (2002) 7315-7321.

DOI: 10.1016/s0038-092x(02)00033-6

Google Scholar

[3] Choi, W., Termin, A., Hoffmann, M.R., 1994. The role of metal ion dopants inquantum-sized TiO2:Correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. 98 (1994) 13669-13679.

DOI: 10.1021/j100102a038

Google Scholar

[4] Di Quarto, F., Di Paola, A., Sunseri, C., Semiconducting properties of anodic WO3 amorphous films, Electrochim. Acta 26, 1981. 1177-1184.

DOI: 10.1016/0013-4686(81)85095-5

Google Scholar

[5] Santato,C.,Odziemkowski, M., Ulmann, M., Augustynski, J., Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications, J. Am. Chem. Soc. 123, (2001) 10639-10649.

DOI: 10.1021/ja011315x

Google Scholar

[6] Wang, H.L., Lindgren, T., He, J.J., Hagfeldt, A., Lindquist, S., Photolelectrochemistry of nanostructured WO3 thin film electrodes for water oxidation: Mechanism of electron transport, J. Phys. Chem. B 104 (2000) 5686-5696.

DOI: 10.1021/jp0002751

Google Scholar

[7] Liu,Y.,Xie,C.,Li, H.,Chen, H.,Zou, T.; Zeng, D., Improvement of gaseous pollutant photocatalysis with WO3/TiO2 heterojunctional-electrical layered system, J. Hazard. Mater. 196 (2012) 52-58.

DOI: 10.1016/j.jhazmat.2011.08.067

Google Scholar

[8] Bi, D.; Xu, Y., Improved Photocatalytic Activity of WO3 through Clustered Fe2O3 for Organic Degradation in the Presence of H2O2, Langmuir 27 (2011) 9359-9366.

DOI: 10.1021/la2012793

Google Scholar

[9] Qamar, M.,Yamani, Z. H.,Gondal, M. A.; Alhooshani, K., Synthesis and comparative photocatalytic activity of Pt/WO3 and Au/WO3 nanocomposites under sunlight-type excitation, Solid State Sci. 13 (2011) 1748-1754.

DOI: 10.1016/j.solidstatesciences.2011.07.002

Google Scholar

[10] Liu, Y., Li, Y.,Li, W.,Han, S.; Liu, C., Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light, Appl. Surf. Sci. 258, (2012), 5038-5045.

DOI: 10.1016/j.apsusc.2012.01.080

Google Scholar

[11] Takeuchi, M.,Shimizu, Y.,Yamagawa, H.,Nakamuro, T.; Anpo, M., Preparation of the visible light responsive N-doped WO3 photocatalyst by a thermal decomposition of ammonium paratungstate, Appl. Catal. B 110 (2011) 1-5.

DOI: 10.1016/j.apcatb.2011.08.004

Google Scholar

[12] Radecka, M., Sobas, P., Wierzbicka, M., Rekas, M., Photoelectrochemical properties of undoped and Ti-doped WO3, Physica B 364 (2005) 85-92.

DOI: 10.1016/j.physb.2005.03.039

Google Scholar

[13] Feng, C.,Wang, S.; Geng, B., Ti(IV) doped WO3 nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance, Nanoscale (2011) 3695-3699.

DOI: 10.1039/c1nr10460h

Google Scholar

[14] Wang, F.,Di Valentin, C.; Pacchioni, G., Doping of WO3 for Photocatalytic Water Splitting: Hints from Density Functional Theory, J. Phys. Chem. C 116 (2012) 8901-8909.

DOI: 10.1021/jp300867j

Google Scholar

[15] Cheng, X. F., Leng, W. H.,Liu, D. P.,Zhang, J. Q.; Cao, C. N., Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light, Chemosphere, 68 (2007) 1976-1984.

DOI: 10.1016/j.chemosphere.2007.02.010

Google Scholar