The Influence of Atmosphere on Electrical Transport Properties in Bilayer Graphene FET by CVD Methods

Article Preview

Abstract:

The desorption process for ambient atmosphere on electrical transport properties of bilayer graphene FET grown by CVD methods on SiO2/Si substrate was investigated in room temperature. With increasing the vacuum time of the device underwent, we found that the voltage of Dirac point decreased, the mobility of hole (electron) increased and the charged impurity density decreased. The results suggest that the atmospheric adsorbates (mainly oxygen and water molecules) are strongly influence the electrical transport properties of graphene FET.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 531-532)

Pages:

383-387

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. S. Novoselov, A. K. Geim, S.V. Morozov, et al: Science Vol. 306 (2004), p.666

Google Scholar

[2] Britnell L, Gorbachev R V, Jalil R, et al: Science Vol. 335 (2012), p.947

Google Scholar

[3] Rumyantsev S, Liu G, Shur M S, et al: Nano Letters Vol. 12 (2012), p.2294

Google Scholar

[4] El-Kady M F, Strong V, Dubin S, et al: Science Vol. 335 (2012), p.1326

Google Scholar

[5] Chen H-Y and Appenzeller J: Nano Letters Vol. 12 (2012), p. (2067)

Google Scholar

[6] Shuai Wang, Priscilla Kailian Ang, Ziqian Wang, et al: Nano Letters Vol. 10 (2010), p.92

Google Scholar

[7] G. Eda, G. Fanchini and Chhowalla M: Nature Nanotechnol Vol. 3 (2008), p.270

Google Scholar

[8] K. S. Kim, Y. Zhao, H. Jang, et al: Nature Vol. 457 (2009), p.706

Google Scholar

[9] Wassei J K, Mecklenburg M, Torres J A, et al: small Vol. 8 (2012), p.1289

Google Scholar

[10] Lee Y g, Kang C G, Jung U J, et al: Applied Physics Letters Vol. 98 (2011), p.183508

Google Scholar

[11] Ryu S, Liu L, Berciaud S, et al: Nano Letters Vol. 10 (2010), p.4944

Google Scholar

[12] Yang Y, Brenner K and Murali R: Carbon Vol. 50 (2012), p.1727

Google Scholar

[13] Kim B J, Jang H, Lee S K, et al: Nano Letters Vol. 10 (2010), p.3464

Google Scholar

[14] Chen F, Xia J, Ferry D K, et al: Nano Letters Vol. 9 (2009), p.2571

Google Scholar

[15] Chen F, Xia J and Tao N: Nano Letters Vol. 9 (2009), p.1621

Google Scholar

[16] Du X, Skachko I, Barker A, et al: nature Nanotechnol Vol. 3 (2008), p.491

Google Scholar

[17] Chen J-H, Jang C, Adam S, et al: Nature Physics Vol. 4 (2008), p.377

Google Scholar

[18] Rumyantsev S, Liu G, Stillman W, et al: Journal of Physics: Condensed Matter Vol. 22 (2010), p.395302

Google Scholar

[19] Gang P, YingQiu Z, YanLan H, et al: SCIENCE CHINA Physics,Mechanics & Astronomy Vol. 55 (2012), p.1

Google Scholar

[20] Reina A, Jia X, Ho J, et al: Nano Letters Vol. 9 (2009), p.30

Google Scholar

[21] Geringer V, Liebmann M, Echtermeyer T, et al: Physics Review Letter Vol. 102 (2009), p.076102

Google Scholar

[22] Novikov D S: Applied Physics Letters Vol. 91 (2007), p.102102

Google Scholar

[23] Huard B, Stander N, Sulpizio J A, et al: Physical Review B Vol. 78 (2008), p.121402

Google Scholar