Preparation and Salt Spray Corrosion Resistance of Ni/BN and NiCrAl/BN Coatings

Article Preview

Abstract:

Ni/BN and NiCrAl/BN abradable sealing coatings used in turbo engines were prepared by plasma spray technology. The phases and the microstructures of the coatings were characterized with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Corrosion behaviors of these coatings were investigated with open-circuit potential (OCP) and salt spray corrosion test. The results showed that the NiCrAl/BN possess better corrosion resistance as compared with Ni/BN.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-70

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.G. Xu, L.Z. Du, B. Yang, W.G. Zhang, Study on saltspray corrosion of Ni–graphite abradable coating with 80Ni20Al and 96NiCr–4Al as bonding layers, Surf. Coat. Technol. 205 (2011) 4154-4161.

DOI: 10.1016/j.surfcoat.2011.03.007

Google Scholar

[2] H.I. Faraoun, T. Grosdidier, J.L. Seichepine, et al., Improvement of thermally sprayed abradable coating by microstructure control, Surf.Coat.Technol. 201 (2006) 2303-2312.

DOI: 10.1016/j.surfcoat.2006.03.047

Google Scholar

[3] H.I. Faraoun, J.L. Seichepine, C. Coddet, H. Aourag, J. Zwick, N. Hopkins, D. Sporer, M. Hertter, Modeling route for abradable coatings, Surf.Coat.Technol. 200 (2006) 6578-6582.

DOI: 10.1016/j.surfcoat.2005.11.105

Google Scholar

[4] J. Matejicek, B. Kolman, J. Dubsky, K. Neufuss, N. Hopkins, J. Zwick, Alternative methods for determination of composition and porosity in abradable materials, Mater.Charact. 57 (2006) 17-29.

DOI: 10.1016/j.matchar.2005.12.004

Google Scholar

[5] F.C. Walsh, C. Ponce de León, C. Kerr, S. Court, B.D. Barker, Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metalcoatings, Surf. Coat. Technol. 202 (2008) 5092-5102.

DOI: 10.1016/j.surfcoat.2008.05.008

Google Scholar

[6] A. Pardo, M.C. Merino, M. Mohedano, P. Casajús, A.E. Coy, Corrosion behaviour of Mg/Alalloys with composite coatings, Surf.Coat.Technol.203 (2009) 1252-1263.

DOI: 10.1016/j.surfcoat.2008.10.030

Google Scholar

[7] M. Campo, M. Carboneras, M.D. López, et al., Corrosion resistance of thermally sprayed Aland Al/SiC coatings on Mg, Surf.Coat.Technol.203 (2009) 3224-3230.

DOI: 10.1016/j.surfcoat.2009.03.057

Google Scholar

[8] A. Lekatou, D. Zois, A.E. Karantzalis, D. Grimanelis, Electrochemical behaviour of cermet coatings with a bond coaton Al7075:Pseudopassivity, localized corrosion and galvanic effect considerations in a saline environment, Corros.Sci.52 (2010) 2616-2635.

DOI: 10.1016/j.corsci.2010.04.010

Google Scholar

[9] C.G. Xu, L.Z. Du, B.Yang, W.G. Zhang, The effect of Al content on the galvanic corrosion behavior of coupled Ni/graphite and Ni–Al coatings, Corros. Sci. 53 (2011) 2066-2074.

DOI: 10.1016/j.corsci.2011.02.019

Google Scholar

[10] X.T. Luo, G.J. Yang, C.J. Li, Multiple strengthening mechanisms of cold-sprayed cBNp/NiCrAl composite coating, Surf. Coat.Technol. 205 (2011) 4808-4813.

DOI: 10.1016/j.surfcoat.2011.04.065

Google Scholar

[11] K. Alvarez, S.K. Hyuu, H. Tsuchiya, S. Fujimoto, H. Nakajima, Corrosion behaviour of Lotus-type porous high nitrogen nickel-free stainless steels, Corros. Sci. 50 (2008) 183-193.

DOI: 10.1016/j.corsci.2007.06.004

Google Scholar