Influence of Power Supply Frequency on Microstructure and Properties of Micro-Arc Oxidation Coating on Aluminium Alloy

Article Preview

Abstract:

This paper studies the influence of current frequency on the micro-arc oxidation (MAO) process, microstructrue and the properties of the formed alumina coatings. The amount of discharge sparks increases and the spark moves more quickly with increasing the frequency of current pulse. SEM results show that the size of the discharge products decreases. The anodic cell voltage decreases with increasing the frequency of power supply, however, the cathodic cell voltage increases. The thickness and roughness of the coating produced using frequency of power supply 50 Hz are high. Increasing the frequency, the thickness of the coating decreases, but coating surface becomes even, and the coating possesses better corrosion protective property

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-81

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Güntherschlze and H. Betz. Die Electronenstromung in Isolatoren bei Extremen Feldstarken, Z.Phys. 91(1934)70.

Google Scholar

[2] Q. B. Nguyen, M.Gupta, Enhancing compressive response of AZ31B using nano-Al2O3 and copper additions, Journal of Alloys and Compounds, 490 (2010) 382.

DOI: 10.1016/j.jallcom.2009.09.188

Google Scholar

[3] S. V. Gnednekov, O. A. Khrisanfova, A. G. Zavidnaya, Composition and adhesion of protective coatings on aluminum, Surf. Coat. Technol. 145 (2001) 146.

DOI: 10.1016/s0257-8972(01)01307-x

Google Scholar

[4] A.A. Voevodin, A.L. Yerokhin, V.V. Lyubinov, et al., Characterization of wear protective Al-Si-O coatings formed on Ai-based alloy by micro-arc discharge treatment, Surf. Coat. Technol. 86-87 (1996) 516.

DOI: 10.1016/s0257-8972(96)03069-1

Google Scholar

[5] V. S. Rudnev, T. P. Yarovaya, D. L. Boguta, L. M. Tyrina, P. M. Nedozorov, P. S. Gordienko, Anodic spark deposition of P, Me(II) or Me(III) containing coatings on aluminium and titanium alloys in electrolytes with polyphosphate complexes, J. Electroanal. Chem. 497 (2001) 150.

DOI: 10.1016/s0022-0728(00)00483-6

Google Scholar

[6] B. Rajasekaran, S.G.S. Raman, S.V. Joshi, et al., Effect of microarc oxidised layer thickness on plain fatigue and fretting fatigue behavior of Al–Mg–Si alloy, Int. J. Fatigue, 30 (2008) 1259.

DOI: 10.1016/j.ijfatigue.2007.08.014

Google Scholar

[7] F. Liu, J.L. Xu, D.Z. Yu, et al., Effects of cathodic voltages on the structure and properties of ceramic coatings formed on NiTi alloy by micro-arc oxidation, Mater. Chem. Phys., 121 (2010) 172.

DOI: 10.1016/j.matchemphys.2010.01.002

Google Scholar

[8] J. M. Li, H. Cai, B.L. Jiang, Growth mechanism of black ceramic layers formed by microarc oxidation, Surf. Coat. Technol. 201 (2007) 8702.

DOI: 10.1016/j.surfcoat.2007.06.010

Google Scholar

[9] J. Liang , L.T. Hua, J.C. Hao, Improvement of corrosion properties of microarc oxidation coating on magnesium alloy by optimizing current density parameters, Appl. Surf. Sci. 253 (2007) 6939.

DOI: 10.1016/j.apsusc.2007.02.010

Google Scholar

[10] S.G. Xin, L.X. Song, R.G. Zhao, X.F.Hu, Properties of aluminum oxide coating on aluminum alloy produced by micro-arc oxidation, Surf. Coat. Technol. 199 (2-3) (2005) 184.

Google Scholar

[11] V. Raj, M. M. Ali, Formation of ceramic alumina nanocomposite coatings on aluminium for enhanced corrosion resistance, Journal of Materials Processing Technology, 209 (2009) 5341.

DOI: 10.1016/j.jmatprotec.2009.04.004

Google Scholar

[12] A.L. Yerokhin, X.Nie, A.Leyland, A.Matthews, S. J. Dowey, Plasma Electrolysis for Surface Engineering. Surf. Coat. Technol. 122(1999)73.

DOI: 10.1016/s0257-8972(99)00441-7

Google Scholar