Influence of Single Layer-Thickness on Residual Thermal Stresses in Sm2Zr2O7/YSZ Thermal Barrier Coatings

Article Preview

Abstract:

In this paper, influence of single-layer thickness on residual stresses in Sm2Zr2O7/YSZ thermal barrier coating was analyzed by finite element method. Results show that the radial stress remains stable in x range 0-12mm, and it decreases abruptly at edge of the sample. The distribution of axial stress resembles that of radial stress, the shear stress increase abruptly at edge of sample. In three typical residual stresses, radial stress has the highest value, axial stress and shear stress can be ignored. The best thickness combination of Sm2Zr2O7/YSZ TBCs should be 0.1mm-NiCoCrAlY layer, 0.05-0.1mm -TGO, 0.1mm-YSZ and 0.9mm-Sm2Zr2O7

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-100

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Vaben, M. O. Jarligo, T. Steinke, et al, Overview on advanced thermal barrier coatings, Surf. Coat. Technol, 145 (2010) 938-942.

Google Scholar

[2] H. S. Zhang, S. R. Liao, X. D. Dang, et al, Preparation and thermal conductivities of Gd2Ce2O7 and (Gd0.9Ca0.1)2Ce2O6.9 ceramics for thermal barrier coatings, J. Alloys Compds. 509 (2011) 1226 -1230.

DOI: 10.1016/j.jallcom.2010.09.196

Google Scholar

[3] L. Ling, X. Qiang, W. F. Chi, Z. H. Song, Thermophysical Properties of Complex Rare-Earth Zirconate Ceramic for Thermal Barrier Coatings, J. Amer. Ceram. Soc. 91 (2008) 2398-2401.

DOI: 10.1111/j.1551-2916.2008.02433.x

Google Scholar

[4] Z. H. Song, X. Qiang, W. F. Chi, et al, Preparation and thermophysical properties of (Sm0.5La0.5)2 Zr2O7 and (Sm0.5La0.5)2(Zr0.8Ce0.2)2O7 ceramics for thermal barrier coatings, J. Alloys. Compds. 475 (2009) 624-628

DOI: 10.1016/j.jallcom.2008.07.068

Google Scholar

[5] Z. G. Liu, J. H. Ouyang, Y. Zhou, Preparation and thermophysical properties of (NdxGd1-x)2Zr2O7 ceramics, J. Mater. Sci. 43 (2008) 3596-3603.

DOI: 10.1007/s10853-008-2570-9

Google Scholar

[6] G. Moskal, L. Swadzba, M. Hetmanczky, et al, Characterisation of the micro-structure and thermal properties of Nd2Zr2O7 and Nd2Zr2O7/YSZ thermal barrier coatings, J. Eur. Ceram. Soc.32 (2012) 2035-2042.

DOI: 10.1016/j.jeurceramsoc.2011.12.004

Google Scholar

[7] L. Wang, Y. Wang, X. G. Sun, et al, Finite element simulation of residual stress of double- ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings using birth and death element technique, Comput. Mater. Sci. 53 (2012) 117-127.

DOI: 10.1016/j.commatsci.2011.09.028

Google Scholar

[8] Z. H. Xu, S. M. Hei, L. M. He, et al, Novel thermal barrier coatings based on La2(Zr0.7Ce0.3)2O7/ 8YSZ double-ceramic-layer system deposited by electron beam physical vapor deposition, J. Alloys Compd. 509 (2011) 4273-4283.

DOI: 10.1016/j.jallcom.2010.12.203

Google Scholar

[9] X. Q. Cao, R. Vassen, F. Tietz, D. Stoever, New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides, J. Eur. Ceram. Soc. 26 (2006) 247-251.

DOI: 10.1016/j.jeurceramsoc.2004.11.007

Google Scholar

[10] Y. Jiang, B. S. Xu, H. D. Wang, et al, Finite element modeling of residual stress around hole in the thermal barrier coatings, Comp. Mater. Sci. 49 (2010) 603-608.

DOI: 10.1016/j.commatsci.2010.05.057

Google Scholar

[11] N. P. Padture, M. Gell, E. H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Sci. 4 (2002) 280-284.

DOI: 10.1126/science.1068609

Google Scholar