Magnetic and Mössbauer Studies in Molecular-Based Magnets NBu4MAII[FeIII(OX)3](MA=Co, Fe)

Article Preview

Abstract:

The mixed valency character and antiferromagnetic coupling in molecule magnets materials NBu4MAII[FeIII(OX)3](MA=Co、Fe) were investigated by magnetic measurements and Mössbauer spectroscopy .In the sample NBu4CoII[FeIII(OX)3],the appearence of temperature point of spin-glass phase transition and magnetic phase transition under the zero-field-cooled AC magnetic measurements with the temperature range 5-100 K.The sample NBu4FeII[FeIII(OX)3] were carried out in the cooling modes in a field,and the sample exhibits multiple magnetic pole reversals in the warming mode magnetic measurements.The phenomenon of multiple magnetic pole reversals occurs in some of those ferrimagnetic materials consisting of magnetic anisotropy ions and two or more types of antiferromagnetically ordered magnetic ions.The compound NBu4FeII[FeIII(OX)3] contains two different spin carries; ie: Fe(II) (SFe(II) = 2), Fe(III) (SFe(III) = 5/2) comes from the Mössbauer studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-218

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Oliver Cador, Maria G. f. Vaz, Humberto O. Stumpf, et al. J. Magn. Magn. Mater. 234 (2001) 6.

Google Scholar

[2] S. Ohkoshi, T. Iyoda, A. Fujishima and K. Hashimoto, Phys. Rev. B 56 (1997) 11642.

Google Scholar

[3] Zhonghui Ye, Qing Lin, Haifu Huang, Yun He, et al. Adv.Mat.Res. 567(2012) 21-24

Google Scholar

[4] A.Bhattacharjee,R.Feyerherra,M.Steiner, J. Magn. Magn. Mater. 195(1999) 336-344

Google Scholar

[5] E. W. Gorter, Philips Res. Rep. 9 (1954) 295, 321, 403.

Google Scholar

[6] J. C. Bailar and E. M. Jones, Inorg. synth. 1 (1939) 37.

Google Scholar

[7] C.J. Nuttall and P. Day, Chem. Mater. 10 (1998) 305.

Google Scholar

[8] C. Mathonière, C. J. Nuttal, S. G. Carling, P. Day, Inorg. Chem. 35 (1996) 1201.

Google Scholar

[9] N. Re, E. Gallo, C. Floriani, H. Miyasaka, N. Matumoto, Inorg. Chem. 35 (1996) 5964.

Google Scholar

[10] S. Ohkoshi, Y. Abe, A. Fujishima, K. Hashimoto, Phys. Rev. Lett. 82 (1999) 1285.

Google Scholar

[11] G.D. Tang, Y. He, F.P. Liang, S.Z. Li, Y.J. Huang, Physica B. 2007. 392:337.

Google Scholar

[12] Hiroko Tamaki, Zhang J.Zhong, Naohide Matsumoto, et al.J. Am. Chem. Soc. 114 (1992) 6974.

Google Scholar

[13] Corine Mathonière, Simon G.Carling, et al.Chem. Commun. (1994) 1551.

Google Scholar

[14] S. Iijima, T. Katsura, H. Tamaki, M. Misumi, et al.Mol. Cryst. 233 (1993) 263.

Google Scholar

[15] Qing Lin, Jianmei Xu,Yun He, et al.Appl. Mech. Mat 184-185 (2012) 1050

Google Scholar

[16] G. Wiatrowski, G. Bayreuther and K. Pruegl, J. Magn. Magn. Mater. 196 (1999) 26.

Google Scholar

[17] A. Bhattacharjee, S. Iijima and F. Mizutani, J. Magn. Magn. Mater. 153 (1996) 235.

Google Scholar

[18] S. Decurtins, H.W. Schmalle, P. Schneuwly, et al. J. Amer. Chem. Soc. 116 (1994) 9521.

Google Scholar

[19] R. Pellaux, H.W. Schmalle, R. Huber, et al. Inorg. Chem. 36 (1997) 2301.

Google Scholar

[20] Y. Ren, T. T. M. Palstra, D. I. Khomskii, E. Pellegrin, et al.Nature (London) 396 (1998) 441.

Google Scholar