Outlook of Preisach Modeling and Magnetic Non Destructive Testing

Article Preview

Abstract:

The Preisach formalism is used as a basis for a vector model of magnetic hysteresis in soft magnetic materials subject to tensile stress. The model uses as vector elementary hysteresis operator the Stoner-Wohlfarth mechanism of coherent rotation while the Preisach density is constructed as the weighed sum of probability density functions corresponding to the high and low induction regions. The model reproduces the basic phenomenology of stress-dependent hysteresis: the double peak in differential permeability modeled as the effect of internal demagnetizing fields emerging from residual stresses; the increase in coercivity due to increased pinning; the decrease in magnetic induction as the result of non-180o domain rotation. The role of the negative differential permeability near remanence and its derivative is discussed with respect to residual stresses and magnetic NDT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-4

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Sato, M. Nagao, Magnetic properties of dislocations, in Concise encyclopedia of magnetic and superconducting materials, Ed. K.H.J. Buschow, Elsevier (1992).

Google Scholar

[2] J.A. Perez-Benitez, J. Capo-Sanchez, L.R. Padovese, Simulation of the Barkhausen Noise using random field Ising model with long-range interaction, Computational Materials Science 44, 850–857(2009).

DOI: 10.1016/j.commatsci.2008.05.001

Google Scholar

[3] Katsuhiko Yamaguchi, Shinya Tanaka, Osamu Nittono, Koji Yamada, Toshiyuki Takagi, Monte Carlo simulation for magnetic dynamic processes of micromagnetic clusters with local disorder, Physica B 372, 251–255 (2006).

DOI: 10.1016/j.physb.2005.10.060

Google Scholar

[4] B. Van de Wiele, L. Dupre, F. Olyslager, Memory properties in a 3D micromagnetic model for ferromagnetic samples, Physica B 403, 342–345 (2008).

DOI: 10.1016/j.physb.2007.08.045

Google Scholar

[5] Sablik M J, Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steels J. Appl. Phys. 89 5610–3 (2001).

DOI: 10.1063/1.1385567

Google Scholar

[6] L Dupre, M J Sablik, R Van Keer and J Melkebeek, Modelling of microstructural effects on magnetic hysteresis properties, J. Phys. D: Appl. Phys. 35, 2086–2090 (2002).

DOI: 10.1088/0022-3727/35/17/303

Google Scholar

[7] Oleksiy Perevertov, Simple algorithm to estimate mean-field effects from minor differential permeability curves based on the Preisach model, J. Phys. D: Appl. Phys. 36, 785–790 (2003).

DOI: 10.1088/0022-3727/36/7/303

Google Scholar

[8] A. Ktena,E. Hristoforou, Stress Dependent Magnetization and Vector Preisach Modeling in Low Carbon Steels, IEEE Trans Mag, 48(4), 1433-1436 (2012).

DOI: 10.1109/tmag.2011.2172786

Google Scholar

[9] V.E. Iordache, E. Hug, N. Buiron, Magnetic behaviour versus tensile deformation mechanisms in a nonoriented Fe/(3 wt. %)Si steel, Materials Science and Engineering A359, 62-74 (2003).

DOI: 10.1016/s0921-5093(03)00358-7

Google Scholar

[10] A. Ktena, D. I. Fotiadis, P. D. Spanos, A. Berger and C. V. Massalas, Identification of 1D and 2D Preisach models for ferromagnets and shape memory alloys, International Journal of Engineering Science, 40 (20), 2235-2247 (2002).

DOI: 10.1016/s0020-7225(02)00116-7

Google Scholar

[11] Shuqiang Yang, G. S. D. Beach, and J. L. Erskine, Negative Barkhausen jumps in permalloy thin-film microstructures, JOURNAL OF APPLIED PHYSICS 100, 113914 (2006).

DOI: 10.1063/1.2400513

Google Scholar