Low-Temperature Synthesis of Maghemite Nanoparticles

Article Preview

Abstract:

Recently, the preparation of magnetic iron oxide nanoparticles has been thoroughly studied due to their unique electric and magnetic properties. Magnetic nanoparticles find uses in a wide range of applications, from data storage and sensors to medical imaging and cancer treatment. Herein, we report a fast and economic chemical procedure for the growth of monodispersed maghemite nanoparticles (NPs) from iron pentacarbonyl Fe (CO)5. The reaction takes place in a closed vessel where the oxidation strength of dimethylsulfoxide (DMSO) is limited by the reductive strength of liberated carbon monoxide from the initial complex. DMSO strips metallic Fe from the intermediate organometallic precursors (e.g. Fe2(CO)9, Fe3(CO)12), which form at temperatures above 100 °C, while at the same time oxidizes it in a controlled manner to the desired magnetic phase at temperatures as low as 130 OC, without the need for the classical refluxing step. Oleic acid is also used as a surfactant, thus maintaining a narrow size distribution of NPs. Another advantage of the synthetic route is the short reaction time (30 min).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

468-471

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] De Faria, D.L.A., Silva, V., de Oliveia, M.T., 1997. Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy 28, 873–878.

DOI: 10.1002/(sici)1097-4555(199711)28:11<873::aid-jrs177>3.0.co;2-b

Google Scholar

[2] E. Aidona, R. Scholger, H.J. Mauritsch, M. Perraki, 2008, Remanence acquisition in a Roman-style gold furnace, Physics and Chemistry of the Earth 33, 438–448.

DOI: 10.1016/j.pce.2008.02.032

Google Scholar

[3] L. Slavov, M.V. Abrashev, T. Merodiiska, Ch. Gelev, R.E. Vandenberghe, I. Markova-Deneva, I. Nedkov, 2010, Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids, Journal of Magnetism and Magnetic Materials (322) Elsevier.

DOI: 10.1016/j.jmmm.2010.01.005

Google Scholar

[4] Ângela L. Andrade, Diana M. Souza, Márcio C. Pereira, José D. Fabris e Rosana Z. Domingues, 2010, Ph effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method, Quim. Nova, Vol. 33, No. 3, 524-527.

DOI: 10.1590/s0100-40422010000300006

Google Scholar

[5] Ling Zhang, Rong He, Hong-Chen Gu, 2006, Oleic acid coating on the monodisperse magnetite nanoparticles, Applied Surface Science 253, 2611–2617.

DOI: 10.1016/j.apsusc.2006.05.023

Google Scholar

[6] Qian Gao, Fenghua Chen, Jilin Zhang, Guangyan Hong, Jiazuan Ni, Xiao Wei, Dejun Wang, 2009, The study of novel Fe3O4@g-Fe2O3 core/shell nanomaterials with improved properties, Journal of Magnetism and Magnetic Materials 321, 1052–1057.

DOI: 10.1016/j.jmmm.2008.10.022

Google Scholar

[7] K. Petcharoena, A. Sirivat, 2012, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method, Materials Science and Engineering B 177, 421– 427.

DOI: 10.1016/j.mseb.2012.01.003

Google Scholar

[8] Xiantao Wen, Junxiao Yang, Bin He, Zhongwei Gu, 2008, Preparation of monodisperse magnetite nanoparticles under mild conditions, Current Applied Physics 8, 535–541.

DOI: 10.1016/j.cap.2007.09.003

Google Scholar

[9] Z. L. Liu, X. Wang, K. L. Yao, G. H. Du, Q. H. Lu, Z. H. Ding, J. Tao, Q. Ning, X. P. Luo, D. Y. Tian, D. Xi, 2004, Synthesis of magnetite nanoparticles in W/O micro-emulsion, Journal of Materials Science 39, 2633 – 2636.

DOI: 10.1023/b:jmsc.0000020046.68106.22

Google Scholar

[10] E. Hristoforou, Magnetostrictive Delay Lines: Engineering Theory and Sensing Applications, Review Article, Meas. Sci. & Technol., 14, p. R15-R47, (2003).

DOI: 10.1088/0957-0233/14/2/201

Google Scholar

[11] E. Hristoforou, New Magnetostrictive Delay Line Arrangements for Sensor Applications, Sensors & Actuators A, 81, p.142 – 146, (2000).

DOI: 10.1016/s0924-4247(99)00139-9

Google Scholar

[12] E. Hristoforou, Magnetic Effects in Physical Sensor Design, J. Opt. Adv. Mat., 4, pp.245-260, (2002).

Google Scholar

[13] DM Kepaptsoglou, A. Ktena, E. Hristoforou, Magnetic sensor response dependence on hysteresis effects, Sensors and Actuators, 119, pp.133-137, (2005).

DOI: 10.1016/j.sna.2004.09.015

Google Scholar

[14] PD Dimitropoulos, GI Stamoulis, E Hristoforou, A 3-d hybrid Jiles-Atherton/Stoner-Wohlfarth magnetic hysteresis model for inductive sensors and actuators, IEEE Sensors Journal, 6 pp.721-736, (2006).

DOI: 10.1109/jsen.2006.874454

Google Scholar

[15] E. Hristoforou, New monolithic three dimensional field sensors with high sensitivity, Journal of Optoelectronics and Advanced Materials, pp.1691-1697, (2006).

Google Scholar