Thermal Expansion and Polarization Behavior in Lead Titanate/Zinc Oxide Nanocomposite Ceramics

Article Preview

Abstract:

Nanosized zinc oxide/lead titanate (ZnO/PT) ceramic matrix nanocomposites have been studied. Under an appropriate sintering condition, ZnO/PT ceramic nanocomposites were successfully fabricated by a pressureless sintering technique. Thermal expansion and polatization behaviors were determined by using the dilatometer. This technique measures the temperature-dependent of the strain, and the magnitude of polarization can be deduced from the sets of the thermal expansion data. The calculated electric polarization values on the ZnO/PT nanocomposite ceramics show the simple approach to determine the temperature dependence of the polarization below and around the transition temperature. Various aspects on understanding the polarization behavior and other effects in the ferroelectric are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-113

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Niihara, New design concept of structural ceramics: ceramic nanocomposites, J. Am. Ceram. Soc. 99 (1991) 974–982.

DOI: 10.2109/jcersj.99.974

Google Scholar

[2] T. Ohji, Y.K. Jeong, Y.H. Choa, K. Niihara, Strengthening and toughening mechanisms of ceramic nanocomposites, J. Am. Ceram. Soc. 81 (1998) 1453–1460.

DOI: 10.1111/j.1151-2916.1998.tb02503.x

Google Scholar

[3] R. Wongmaneerung, A. Rujiwatra, R. Yimnirun, S. Ananta, Fabrication and dielectric properties of lead titanate nanocomposites, J. Alloys Compd. 475 (2009) 473–478.

DOI: 10.1016/j.jallcom.2008.07.074

Google Scholar

[4] R. Wongmaneerung, P. Singjai, R. Yimnirun, S. Ananta, Effects of SiC nanofibers addition on microstructure and dielectric properties of lead titanate ceramics, J. Alloys Compd. 475 (2009) 456–462.

DOI: 10.1016/j.jallcom.2008.07.051

Google Scholar

[5] R. Wongmaneerung, S. Choopan, R. Yimnirun, S. Ananta, Dielectric properties of PbTiO3/ZnO ceramic nanocomposites obtained by solid–state reaction method, J. Alloys Compd. 509 (2011) 3547–3552.

DOI: 10.1016/j.jallcom.2010.12.024

Google Scholar

[6] G. Burns, F.H. Dacol, Polarization in the cubic phase of BaTiO3, Solid State Commun. 42 (1982) 9–12.

DOI: 10.1016/0038-1098(82)91018-3

Google Scholar

[7] G. Burns, F.H. Dacol, Soft phonons in a ferroelectric polarization glass system, Solid State Commun. 58 (1986) 567–571.

DOI: 10.1016/0038-1098(86)90220-6

Google Scholar

[8] J. Zhao, A.E. Glazounov, Q.M. Zhang, B. Toby, Neutron diffraction study of electrostrictive coefficients of prototype cubic phase of relaxor ferroelectric PbMg1/3Nb2/3O3, Appl. Phys. Lett. 72 (1998) 1048–1050.

DOI: 10.1063/1.120960

Google Scholar

[9] D. La–Orauttapong, J. Toulouse, Z. –G. Ye,W. Chen, R. Erwin, J.L. Robertson, Neutron scattering study of the relaxor ferroelectric (1–x)Pb(Zn1/3Nb2/3)O3–xPbTiO3, Phys. Rev. B 67 (2003) 134110–134120.

DOI: 10.1063/1.1499557

Google Scholar

[10] W. Kleemann, P. Licinio, T. Woike, R. Pankrath, Dynamic light scattering at domains and nanoclusters in a relaxor ferroelectric, Phys. Rev. Lett. 86 (2001) 6014–6017.

DOI: 10.1103/physrevlett.86.6014

Google Scholar

[11] A.S. Bhalla, R. Guo, L.E. Cross, Measurements of strain and the optical indices in the ferroelectric Ba0. 4Sr0. 6Nb2O6: polarization effects, Phys. Rev. B. 36 (1987) 2030–(2035).

Google Scholar

[12] M. J. Huan, E. Furman, S. J. Jang, H. A. McKinstry, L. E. Cross, Thermodynamic theory of PbTiO3, J. Appl. Phys. 62 (1987) 3331–3338.

Google Scholar

[13] R. Wongmaneerung, R. Yimnirun, S. Ananta, R. Guo, A. S. Bhalla, Polarization behavior in the two stage sintered lead titanate ceramics, Ferroelectric Lett., 33 (2006) 137–146.

DOI: 10.1080/07315170601014984

Google Scholar