Effect of Rare Earth Oxides on the Temperature Characteristics of BaTiO3-Based Ceramics

Article Preview

Abstract:

Effect of rare earth oxides (Y, Nd, Gd, Ho, Yb, Er, Pr, Dy, La, Ce) on the temperature characteristics of BaTiO3(BT)-Nb2O5-ZnO ceramics was investigated. It was found that, according to the effect on the dielectric constant peaks at 40°C and 127°C of BT ceramics, the doping rare earth oxides can be divided into three categories. The different doping effects of rare earth oxides on the temperature capacitance variation of BT ceramics can be explained by the change of the volume fraction of grain core and grain shell in the core-shell structure. BT ceramics sintered at 1140°C in air have the following properties: ε25°C>3300, tanδ≤1.0%, ρ≥1012 Ω•cm and ΔC/C(-55 to +125°C)≤±10%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-99

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Sakabe, Y. Hamaji, H. Sano, and N. Wada: Jpn. J. Appl. Phys. 41 (2002) 5668.

Google Scholar

[2] Q. Feng, and C.J. McConville: J. Am. Ceram. Soc. 87 (2004) (1945).

Google Scholar

[3] P. Yu, B. Cui, and Z. Chang: Mater. Res. Bull. 44 (2009) 893.

Google Scholar

[4] K. Kinoshita, and A. Yamaji: J. Appl. Phys. 47 (1976) 371.

Google Scholar

[5] D. Hennings, and G. Rosenstein: J. Am. Ceram. Soc. 67 (1984) 249.

Google Scholar

[6] T.R. Armstrong, L.E. Morgens, A.K. Maurice, and R.C. Buchanan: J. Am. Ceram. Soc. 72 (1989) 605.

Google Scholar

[7] Y. Park, and S.A. Song: J. Mater. Sci.: Mater. Electron. 6 (1995) 380.

Google Scholar

[8] H. Chazono, and H. Kishi: J. Am. Ceram. Soc. 82 (1999).

Google Scholar

[9] B. Tang, S.R. Zhang, and X.H. Zhou: Jpn. J. Appl. Phys. 48 (2009).

Google Scholar

[10] T.A. Jain, C.C. Chen, and K.Z. Fung: J. Alloy. Compd. 476 (2009).

Google Scholar

[11] K. -J. Park, C. -H. Kim, Y. -J. Yoon, S. -M. Song, Y. -T. Kim, and K. -H. Hur: J. Eur. Ceram. Soc. 29 (2009) 1735.

Google Scholar

[12] X.L. Sun, A.I.Y. Tok, R. Huebner, and F.Y.C. Boey: J. Eur. Ceram. Soc. 27 (2007).

Google Scholar

[13] Y. Tsur, A. Hitomi, I. Scrymgeour, and C.A. Randall: Jpn. J. Appl. Phys. 40 (2001) 255.

Google Scholar

[14] M. -H. Lin, and H. -Y. Lu: Mater. Sci. Eng. A. 335 (2002) 101.

Google Scholar

[15] D. Makovec, Z. Samardzija, and M. Drofenik: J. Am. Ceram. Soc. 87 (2004) 1324.

Google Scholar

[16] J. Jeong, E.J. Lee, and Y.H. Han: Mater. Chem. Phys. 100 (2006) 434.

Google Scholar

[17] Y. Tsur, T.D. Dunbar, and C.A. Randall: J. Electroceram. 7 (2001) 25.

Google Scholar

[18] H. Kishi, Y. Okino, M. Honda, Y. Iguchi, M. Imaeda, Y. Takahashi, H. Ohsato, and T. Okuda: Jpn. J. Appl. Phys. 36 (1997).

DOI: 10.1143/jjap.36.5954

Google Scholar

[19] K. Watanabe, H. Ohsato, H. Kishi, Y. Okino, N. Kohzu, Y. Iguchi, and T. Okuda: Solid State Ionics. 108 (1998).

Google Scholar

[20] H. Kishi, N. Kohzu, Y. Mizuno, Y. Iguchi, J. Sugino, H. Ohsato, and T. Okuda: Jpn. J. Appl. Phys. 38 (1999) 5452.

DOI: 10.1143/jjap.38.5452

Google Scholar

[21] M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, and M. Hanuskova: J. Eur. Ceram. Soc. 20 (2000) (1997).

Google Scholar

[22] H. Kishi, N. Kohzu, Y. Iguchi, J. Sugino, M. Kato, H. Ohsato, and T. Okuda: J. Eur. Ceram. Soc. 21 (2001) 1643.

Google Scholar

[23] Y. Park, and S.A. Song: Mater. Sci. Eng. B. 47 (1997) 28.

Google Scholar

[24] Y. Park, K. Cho, and H. -G. Kim: Mater. Res. Bull. 32 (1997) 1485.

Google Scholar

[25] D.F.K. Hennings, and B.S. Schreinemacher: J. Eur. Ceram. Soc. 14 (1994).

Google Scholar

[26] Y. Park, Y.H. Kim, and H.G. Kim: Mater. Lett. 28 (1996).

Google Scholar

[27] A. Yamaji, Y. Enomoto, K. Kinoshita, and T. Murakami: J. Am. Ceram. Soc. 60 (1977).

Google Scholar

[28] Y. Enomoto, and A. Yamaji: Am. Ceram. Soc. Bull. 60 (1981).

Google Scholar

[29] Y. Park, and H.G. Kim: J. Mater. Sci. Lett. 17 (1998) 157.

Google Scholar

[30] Y. Park, and H.G. Kim: Ceram. Int. 23 (1997).

Google Scholar