The High DC Electric Field Effects on the Dielectric Behavior of Barium Strontium Titanate Ceramics

Article Preview

Abstract:

BaxSr1-xTiO3 (x=0.4, 0.5, 0.6) ceramics were fabricated by the conventional solid-state reactions method. The temperature dependences of the dielectric constant and tunability were investigated under high DC electric field. It was found that the change of dielectric constant and tunability under the applied electric field were closely related to ferroelectric phase, phase transition region and paraelectric phase states. The Curie temperature (Tc) was gradually shifted to higher temperature and were broadened and depressed with increasing of DC electric field. The tunability dependence of temperature exhibits different trends in a wide temperature range and reaches a maximum value near the ferroelectric-paraelectric phase transition. These results may be helpful in understanding the mechanism of dielectric response under higher electric field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-132

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, N. Setter, Ferroelectric Materials for Microwave Tunable Applications, J. Electroceram. 11(2003) 5-66.

DOI: 10.1023/b:jecr.0000015661.81386.e6

Google Scholar

[2] L.B. Kong, S. Li, T.S. Zhang, J.W. Zhai, F.Y.C. Boey, J. Ma, Electrically tunable dielectric materials and strategies to improve their performances, Progress in Materials Science 55 (2010) 840-893.

DOI: 10.1016/j.pmatsci.2010.04.004

Google Scholar

[3] E. A. Nenasheva, A. V. Kanareykin, N. F. Kartenko, A. I. Dedyk, S. F. Karmanenko, Ceramics Materials Based on (Ba,Sr)TiO3 Solid Solutions for Tunable Microwave Devices, J. Electroceram. 13(2004) 235-238.

DOI: 10.1007/s10832-004-5104-0

Google Scholar

[4] V.B. Shirokov, V.I. Torgashev, A.A. Bakirov, V.V. Lemanov, Concentration phase diagram of BaxSr1-xTiO3, Phys. Rev. B 73 (2006) 104116.

Google Scholar

[5] V.V. Lemanov, E.P. Smirnova, P.P. Syrnikov, E.A. Tarakanov, Phase transitions and glasslike behavior in Sr1-xBaxTiO3, Phys. Rev. B 54 (1996) 3151-3157

Google Scholar

[6] H. Diamond, Variation of Permittivity with Electric Field in Perovskite-Like Ferroelectrics, J. Appl. Phys. 32 (1961) 909-915.

DOI: 10.1063/1.1736132

Google Scholar

[7] K. M. Johnson, Variation of Dielectric Constant with Voltage in Ferroelectrics and Its Application to Parametric Devices, J. Appl. Phys. 33 (1962) 2826-2831.

DOI: 10.1063/1.1702558

Google Scholar

[8] X.Y. Wei, X. Yao, Nonlinear dielectric properties of barium strontium titanate ceramics, Mater. Sci. Eng. B 99 (2003) 74-78.

DOI: 10.1016/s0921-5107(02)00423-3

Google Scholar

[9] L.P. Curecheriu, L. Mitoseriu, A. Ianculescu, Nonlinear dielectric properties of Ba1-xSrxTiO3, J. Alloys Compd. 482 (2009) 1-4.

DOI: 10.1016/j.jallcom.2009.04.036

Google Scholar

[10] C. Ang, Z. Yu, dc electric-field dependence of the dielectric constant in polar dielectrics: Multipolarization mechanism model, Phys. Rev. B 69 (2004) 174109.

DOI: 10.1103/physrevb.69.219904

Google Scholar

[11] J.J. Zhang , J.W. Zhai , X.J. Chou, J. Shao, X. Lu, and X. Yao, Microwave and infrared dielectric response of tunable Ba1-xSrxTiO3 ceramics, Acta Mater. 57 (2009) 4491–4499.

DOI: 10.1016/j.actamat.2009.06.011

Google Scholar

[12] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[13] D.A. Tenne, A. Soukiassian, X.X. Xi, H. Choosuwan, R. Guo, A.S. Bhalla, Lattice dynamics in BaxSr1-xTiO3 thin films studied by Raman spectroscopy, J. Appl. Phys. 96 (2004) 6597-6605.

DOI: 10.1063/1.1806553

Google Scholar

[14] Y. Chen, X.L. Dong, R.H. Liang, J.T. Li, Y.L. Wang, Dielectric properties of Ba0.6Sr0.4TiO3/Mg2SiO4/MgO composite ceramics, J. Appl. Phys. 98 (2005) 064107.

Google Scholar

[15] X.J. Chou, J.W. Zhai, J.Y. Sun, X. Yao, Preparation and dielectric properties of B2O3-Li2O-doped BaZr0.35Ti0.65O3 ceramics sintered at a low temperature, Ceram. Int. 34 (2008) 911-915.

DOI: 10.1016/j.ceramint.2007.09.056

Google Scholar

[16] W.J. Merz, Double Hysteresis Loop of BaTiO3 at the Curie Point, Phys. Rev. 91 (1953) 513-517.

Google Scholar

[17] Z. Yu, C. Ang, P.M. Vilarinho, P.Q. Mantas, J.L. Baptista, Dielectric relaxation behavior of Bi:SrTiO3: I. The low temperature permittivity peak, J. Eur. Ceram. Soc. 18 (1998) 1613-1619.

DOI: 10.1016/s0955-2219(98)00027-2

Google Scholar

[18] T. Maiti, R. Guo, A.S. Bhalla, Electric field dependent dielectric properties and high tunability of BaZrxTi1-xO3 relaxor ferroelectrics, Appl. Phys. Lett. 89 (2009) 122909.

DOI: 10.1063/1.2354438

Google Scholar

[19] W.L. Zhong, Physics of Ferroelectrics, Science, Beijing, China, 2000, 234-237.

Google Scholar

[20] A.F. Devonshire, Theory of barium titanate, Philos Mag. 40 (1949) 1040-1063.

Google Scholar

[21] J.W. Zhai, H. Chen, C.C. Chou, S.I. Raevskaya, S.A. Prosandeev, I.P. Raevski, Peculiarities of temperature and field dependence of tunability in Ba0.6Sr0.4TiO3 ceramics with differing grain sizes, J. Alloys Compd. 509 (2011) 6113-6116.

DOI: 10.1016/j.jallcom.2011.03.047

Google Scholar

[22] S.N. Dorogovtsev, Effect of external field on the susceptibility maximum temperature in the system with diffuse phase transition, Sov. Phys. Solid State Phys. 24 (1982) 948.

Google Scholar