[1]
W. Heywang, Barium titanate as a Semiconductor with Blocking Layers, Solid State Electron. 3.
Google Scholar
[1]
(1961) 51-58.
Google Scholar
[2]
W. Heywang, Resistivity Anomaly in Doped Barium Titanate, J. Am. Ceram. Soc. 47.
Google Scholar
[10]
1964) 484-490.
Google Scholar
[3]
G. H. Jonker, Some Aspects of Semiconducting Barium Titanate, Solid State Electron. 7 (1964) 895-903.
DOI: 10.1016/0038-1101(64)90068-1
Google Scholar
[4]
G. H. Jonker, E. E. Havinga, The Influence of Foreign Atoms on the Crystal Lattice of BariumTitanate, Mater. Res. Bull. 17(1982) 345-350.
Google Scholar
[5]
J. Daniels, K. H. Hardtl, R. Wernicke, The PTC Effect of Barium Titanate, Philips Tech Rev. 38.
Google Scholar
[3]
(1978/1979) 73-82.
Google Scholar
[6]
D. C. Hill, H. L. Tuller, Ceramic Sensors: Theory and Practice. in: R. C. Buchanan (Ed. ), Ceramic Materials for Electronics Processing, Properties and Applications, second ed., MarcelDekker Inc., New York, 1991, pp.249-347.
Google Scholar
[7]
J. Daniels, K. H. Hardtl, Part I Electrical Conductivity at High Temperature of Donor Doped Barium Titanate Ceramics, Philips Res. Repts. 31 (1976) 489-504.
Google Scholar
[8]
A. B. Alles, V. W. Amarakoon, V. L. Burdick, Positive Temperature Coefficient of ResistivityEffect in Undoped, Atmospherically Reduced Barium Titanate, J. Am. Ceram. Soc. 72.
DOI: 10.1111/j.1151-2916.1989.tb05970.x
Google Scholar
[1]
(1989) 148-51.
Google Scholar
[9]
B. C. LaCourse, V. W. Amarakoon, Characterization of the Firing Schedule for PositiveTemperature Coefficient of Resistance BaTiO3, J. Am. Ceram. Soc. 78.
Google Scholar
[12]
(1995) 3352-3356.
Google Scholar
[10]
B. M. Kulwicki, PTC Material Technology, in: L. M. Levinson, (Ed. ), Advanced in Ceramics Vol. 1, Grain Boundary Phenomena in Electronic Ceramics, The Am. Ceram. Soc. Inc., Columbus, Ohio, 1981, pp.138-54.
Google Scholar
[11]
S. H. Cho, Theoretical Aspects of PTC Thermistors, J. Korean Ceram Soc. 43.
Google Scholar
[11]
(2006) 673-679.
Google Scholar
[12]
A. J. Moulson, J. M. Herbert, Electroceramics, second ed., John Wiley & Sons Inc., New York, (2003).
Google Scholar
[13]
B. Hubrechts, K. Ishizaki, M. Takata, Review the Positive Temperature Coefficient of Resistivity in Barium Titanate, J. Mater. Sci. 30 (1995) 2463-74.
DOI: 10.1007/bf00362121
Google Scholar
[14]
H. Ueoka, M. Yodogawa, Ceramic Manufacturing Technology for the High Performance PTCThemistor, IEEE Trans. Manuf. Technol. 32 (1974) 77-82.
DOI: 10.1109/tmft.1974.1135679
Google Scholar
[15]
E. Andrich, Properties and Applications of PTC Thermistors, Electronic Application. 26.
Google Scholar
[3]
(1965-66) 123.
Google Scholar
[16]
Y. Matsuo, M. Fujimura, H. Sasahi, K. Nagase, S. Hayakawa, Semiconducting BaTiO3 withAl2O3 SiO2 and TiO2, Am. Ceram. Soc. Bull. 47(1968) 292-297.
Google Scholar
[17]
P. Bomlai, N. Sirikurat, A. Brown, S. Milne, Effects of TiO2 and SiO2 additions on Phase Formation, Microstructures and PTCR Characteristics of Sb-doped Barium Strontium Titanate Ceramics, J. Euro. Ceram. Soc. 25 (2005) 1905–(1918).
DOI: 10.1016/j.jeurceramsoc.2004.06.015
Google Scholar
[18]
T. Singhadej, T. Tunkasiri, Characterization and Properties of Sb-doped BaTiO3 Powders, Appl. Phys. Lett. 90 (2007) 072908.
DOI: 10.1063/1.2468958
Google Scholar
[19]
W. Li, Z. J. Xu, R. Q. Chu, F. Peng, Structure and Dielectric Behavior of La-Doped BaTiO3Ceramics, Adv. Mater. Res. 105-106 (2010) 252.
Google Scholar
[20]
J. G. Kim, W. P. Tai, PTCR Characteristics and Fabrication of Porous, Sb-Doped BaTiO3Ceramics, J. Porous Materials. 10(2003) 69-74.
Google Scholar