Structural and Magnetic Studies of Zn Doped LaRh1-2xCu2xO3

Article Preview

Abstract:

Two series of Zn doped Rh perovskites LaRh1-2xCux ZnxO3 and La0.75Pb0.25Rh1-2xCuxZnxO3 (0≤ x ≤0.25) were synthesised by solid-state methods and their crystallographic, magnetic, and electric properties investigated. Both series have an orthorhombic perovskite-type structure in space group Pbnm. The increase in Zn content has an obvious impact on the electron delocalisation in which the shift in the average valency of Cu and Rh (+2.5 and +3.5) has resulted in a reduction in cell volumes and an increase in the effective magnetic moments. The Curie–Weiss magnetization curves measured between 5-300K are indicative of antiferromagnetism. The addition of Pb to the A- site decreases the conductivity as anticipated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-180

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Taniguchi, W. Iizuka, Y. Nagata, T. Uchida, H. Samata, Journal of Alloys and Compounds, 350 (2003) 24-29.

DOI: 10.1016/s0925-8388(02)00969-6

Google Scholar

[2] V.V. Bannikov, I.R. Shein, V.L. Kozhevnikov, A.L. Ivanovskii, Journal of Structural Chemistry, 49 (2008) 781-787.

Google Scholar

[3] H. Falcón a, M. Martinez-Lope, Applied Catalysis B: Environmental, 26 (2000) 131–142.

Google Scholar

[4] M. Karppinen, H. Yamauch, T. Ito, H. Suematsu,O. Fukunaga, Materials Science and Engineering B 41 (1996) 59-62.

Google Scholar

[5] M.T. Haque, H. Satoh, N. Kamegashira, Materials Research Bulletin, 39 (2004) 375-388.

Google Scholar

[6] J. Liu, Z. Zhao, C. Xu, A. Duan, G. Jiang, J. Phys. Chem., 112 (2008) 5930-5941.

Google Scholar

[7] B. Kennedy, Q. Zhou, Solid State Communications, 147 (2008) 208–211.

Google Scholar

[8] J. Ting, B. Kennedy, Z. Zhang, M. Avdeev, B. Johannessen, L. Jang, Chem. Mater., 22 (2010) 1640-1646.

Google Scholar

[9] Z. Gong, X. Yin, L. Hong, J. Electrochem. Soc, 157 (2010) E129-E134.

Google Scholar

[10] K. Liss, B. Hunter, M. Hagen, T. Noakes, S. Kennedy, Physica B, 385–386 (2006) 1010–1012.

DOI: 10.1016/j.physb.2006.05.322

Google Scholar

[11] K.S. Wallwork, B.J. Kennedy, D.A. Wang, AIP Conference Proceedings, 879 (2007) 879-882.

Google Scholar

[12] B.A. Hunter, C.J. Howard, A Computer Program for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns, Lucas Heights Research Laboratories, Sydney, (1998)

Google Scholar

[13] R.B. Macquart, M.D. Smith, H.-C. zur Loye, Crystal Growth and Design, 6 (2006) 1361-1365.

Google Scholar

[14] R.D. Shannon, Acta Crystallogr, 32 (1976) 751–767.

Google Scholar

[15] J. Zhang, D. Ye, American Mineralogist, 76 (1991) 100-105.

Google Scholar

[16] T. Taniguchia, W. Iizukaa, Y. Nagataa, T. Uchidab, H. Samatac, Journal of Alloys and Compounds, 350 (2003) 24-29.

Google Scholar

[17] T. Ohnishia, T. Taniguchia, A. Ikoshia, S. Mizusakia, Y. Nagataa, S.H. Lai, M.D. Lanb, Y. Noroc, T.C. Ozawad, K. Kindoe, A. Matsuoe, S. Takayanagif, Journal of Alloys and Compounds, 506 (2010) 27-32.

Google Scholar