Experimental Determination of Heat Transfer Coefficients for Forming of Stainless Steel Sheets Considering Process Conditions and Deep-Drawing Film

Article Preview

Abstract:

Heat transfer coefficients are playing an important role in forming of metastable stainless steel sheets. Metastable austenitic stainless steels are highly influenced by heating of forming tools due to generation of latent heat during forming process. Strain-induced martensite formation and hence the TRIP-effect is directly coupled with the temperature development within forming tools as well as the temperature induced by heat controlled tools. Measurements of heat development in serial deep drawing processes are showing the need for an accurate determination of heat transfer coefficients considering actual process conditions. Heat transfer coefficients were determined with a simple and easy applicable measurement device for tool materials AMPCO 25 and cold work tool steel EN 1.2379 in combination with aluminum, austenitic EN 1.4301 and ferritic EN 1.4016 stainless steel grades. Special attention was paid to production-related individual influences such as surface conditions, lubrication and deep drawing film. Experiments were accomplished between 1-15 N/mm² showing high influence of intermediate media on heat transfer between forming tool and part and serve as boundary conditions for fully thermo-mechanical coupled forming simulations. A strong influence of deep drawing film, lubrication and surface pressure on heat exchange could be determined and this basic knowledge is seen as mandatory for dimensioning of heat controlled metal forming tools. Finally the experimental determined results are discussed and compared to common heat transfer models and similar experiments from literature.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

1501-1508

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Schmid, P.; Liewald, M.: Determining experimental parameters for the thermal-mechanical Forming simulation concerning martensite formation in austenitic stainless steel; in: The 8th Numisheet conference, p.446–452, Seoul, (2011)

DOI: 10.1063/1.3623643

Google Scholar

[2] Küppers, W.: Zur Umformung und Oberflächenbehandlung nichtrostender Feinbleche; in: Thyssen Edelstahl Technische Berichte, 12 Heft 1, p.3–34, Krefeld, (1986)

Google Scholar

[3] Fieberg, C.; Kneer, R. (2006): Bestimmung des Kontakt-Wärmeübergangskoeffizienten aus transienten Temperaturmessungen; Chemie Ingenieur Technik Vol. 79 (2007) 1-2; pp.97-102

DOI: 10.1002/cite.200600078

Google Scholar

[4] Herwig, H.; Moschallski, A. : Wärmeübertragung - Physikalische Grundlagen; Springer Verlag, Berlin-Heidelberg, (2006)

Google Scholar

[5] Neugebauer, R.; Schieck, F.: Aspects of simulation based process and tool design for heat supported sheet metal forming; Proc. 10th Int. Conf. Techn. Plast. ICTP, 2011, p.426–431

Google Scholar

[6] Schmid, P.; Liewald, M.: Temperaturentwicklung beim Umformen nichtrostender Stähle; in: wt-online, 101 (2011), p.650–654

DOI: 10.37544/1436-4980-2011-10-650

Google Scholar

[7] Hänsel, A. (1998): Nichtisothermes Werkstoffmodell für die FE-Simulation von Blechumformprozessen mit metastabilen austenitischen CrNi-Stählen; in: Fortschritts-Bericht VDI Reihe 2; 491; VDI Düsseldorf, (1998)

Google Scholar

[8] Rosochowska, M.; Balendra, R.; Chodnikiewicz, K. (2002): Measurements of thermal contact conductance; Journal of Materials Processing Technology (2003) No. 135, p.204–210

DOI: 10.1016/s0924-0136(02)00897-x

Google Scholar

[9] Xu, R.; Xu, L. (2005); An experimental investigation of thermal contact conductance of stainless steel at low temperatures; Cryogenics 45 (2005), pp.694-704

DOI: 10.1016/j.cryogenics.2005.09.002

Google Scholar

[10] Sunil, K. S.; Ramamurthi, K. (2003): Thermal contact conductance of pressed contacts at low temperatures; Cryogenics 44 (2004), pp.727-734

DOI: 10.1016/j.cryogenics.2004.04.004

Google Scholar

[11] Schmid, P.; Liewald, M.: Thermo-mechanical forming simulation of stainless steel sheets - parameter identification and solution strategies; in: Neue Trends Werkstofft., Czech Republic, (2011)

Google Scholar

[12] Groche, P.; Engels, M.: Thermische Einflüsse in der Blechumformung; in: wt-online, 101 (2011), Heft 10, p.692–698

DOI: 10.37544/1436-4980-2011-10-692

Google Scholar

[13] Semitiatin, S. L.; Collings, E. W.; Wood, V. E.; Altan, T. (1986): Determination of the Interface Heat Transfer Coefficient for Non-Isothermal Bulk-Forming Processes; Journal of Engineering for Industry Volume 109 (1987), pp.49-57

DOI: 10.1115/1.3187094

Google Scholar

[14] Burte, P. R.; Im, Y.-T.; Altan, T.; Semiatin; S. L. (1989): Measurement and Analysis of Heat Transfer and Friction During Hot Forging; J. of Engineering for Industry 112 (1990), pp.332-339

DOI: 10.1115/1.2899596

Google Scholar

[15] Alasti, M.: Modellierung von Reibung und Wärmeübergang in der FEM-Simulation von Warmmassivumformprozessen, Dissertation, Leibniz Universität Hannover, (2008)

Google Scholar

[16] Mikic, B.B. (1966): Thermal Contact Resistance, Dissertation, Massachusetts Institute of Technology, (1966)

Google Scholar