[1]
Ezugwu, E. O., 2005, Key improvements in the machining of difficult-to-cut aerospace superalloys, Int. J. Machine Tools Mf., 45/12-13: 1353-1367.
DOI: 10.1016/j.ijmachtools.2005.02.003
Google Scholar
[2]
Dudzinski, D., Devillez, A., Moufki, A., Larrouquère, D., Zerrouki, V., and Vigneau, J., 2004, A review of developments towards dry and high speed machining of Inconel 718 alloy, Int. J. Machine Tools Mf., 44/4: 439-456.
DOI: 10.1016/s0890-6955(03)00159-7
Google Scholar
[3]
Choudhury, I. A. and El-Baradie, M. A., 1998, Machinability of nickel-base super alloys: a general review, J. Mater. Process. Technol., 77/1: 278-284.
DOI: 10.1016/s0924-0136(97)00429-9
Google Scholar
[4]
Crafoord, R., Kaminski, J., Lagerberg, S., Ljungkrona, O., Wretland, A., 1999, Chip control in tube turning using a high-pressure water jet, Proc. IMechE Part B, 213: 761-767.
DOI: 10.1243/0954405991517191
Google Scholar
[5]
Sharman, A.R.C., Hughes J.I., Ridgway K., 2008, Surface integrity and tool life when turning Inconel 718 using ultra-high pressure and flood coolant systems, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222: 653-664.
DOI: 10.1243/09544054jem936
Google Scholar
[6]
Kaminski, J., Alvelid, B., 2000, Temperature reduction in the cutting zone in water-jet assisted turning, Journal of Materials Processing Technology, 106: 68-73.
DOI: 10.1016/s0924-0136(00)00640-3
Google Scholar
[7]
Ezugwu, E. O., Bonney, J., 2004, Effect of high-pressure coolant supply when machining nickel-base, Inconel 718, alloy with coated carbide tools. In: Journal of Materials Processing Technologie, 153-154: 1045-1050.
DOI: 10.1016/j.jmatprotec.2004.04.329
Google Scholar
[8]
Mazurkiewicz, M., Kubala, Z., Chow, J., 1989, Metal Machining With High-Pressure WaterJet Cooling Assistance - A New Possibility, Journal of Engineering for Industry 111/7.
DOI: 10.1115/1.3188736
Google Scholar
[9]
Ezugwu, E. O., Machado, A. R., Pashby, I. R., Wallbank, J., 1990, The Effect of High-Pressure Coolant Supply When Machining a Heat-Resistant Nickel-Based Superalloy. In: Lubrication Engineer, 47: 751-757.
DOI: 10.1080/10940349808945655
Google Scholar
[10]
Braham, T., Germain, G., Robert, R.; Lebrun, J.L., Auger, S., 2009, High pressure water jet assisted machining of duplex steel: Machinability and tool life. 12th CIRP Conference on Modelling of Machining Operations, Donostia-San Sebastiân, Spanien, 7. -8. Mai (2009).
DOI: 10.1007/s12289-010-0818-9
Google Scholar
[11]
Machado, A. R., Wallbank, J., 1994, The effects of a high-pressure coolant jet on machining, Proc. IMechE, 208: 29-38.
Google Scholar
[12]
Crafoord, R., Kaminski, J., Lagerberg, S., Ljungkrona, O., Wretland, A., 1999, Chip control in tube turning using a high-pressure water jet, Proc. IMechE Part B, 213: 761-767.
DOI: 10.1243/0954405991517191
Google Scholar
[13]
Sharman, A.R.C., Hughes J.I., Ridgway K., 2008, Surface integrity and tool life when turning Inconel 718 using ultra-high pressure and flood coolant systems, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222: 653-664.
DOI: 10.1243/09544054jem936
Google Scholar
[14]
Palanisamy, S., McDonald, S.D., Dargusch, M.S., 2009, Effects of coolant pressure on chip formation while turning Ti6Al4V alloy, International Journal of Machine Tools and Manufacture, 49: 739-743.
DOI: 10.1016/j.ijmachtools.2009.02.010
Google Scholar
[15]
Klocke, F., Sangermann, H., Krämer, A. and Lung, D., 2011, Influence of a high-pressure lubricoolant supply on thermo-mechanical tool load and tool wear behaviour in the turning of aerospace materials, Proc. IME B J. Eng. Manufact., 225/1: 52-61.
DOI: 10.1177/09544054jem2082
Google Scholar
[16]
Kaminski, J., Ljungkrona, O., Crafoord, R., Lagerberg. S., 2000, Control of chip flow direction in high-pressure water jet-assisted orthogonal tube turning, Journal of Materials Processing Technology, 214: 529-534.
DOI: 10.1243/0954405001518224
Google Scholar
[17]
ISCAR Germany GmbH, 2010, Effizienz im Schneidprozess und Hochdruckkühlschmierung bei der Bearbeitung von Sonderwerkstoffen, Fräsen + Bohren, 32-37.
Google Scholar
[18]
Khan, A. A.; Ahmed, M. I., 2008, Improving tool life using cryogenic cooling. In: Journal of Materials Processing Technology., 196: 149-154.
DOI: 10.1016/j.jmatprotec.2007.05.030
Google Scholar
[19]
Hong, S. Y.; Markus, I.; Jeong, W., 2001, New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. In: International Journal of Machine Tools & Manufature. 41: 2245-2260.
DOI: 10.1016/s0890-6955(01)00041-4
Google Scholar
[20]
Wang, Z. Y.; Rajurka, K. P., 2000, Cryogenic machining of hard-to-cut materials. In: Wear, 239: 168-175.
DOI: 10.1016/s0043-1648(99)00361-0
Google Scholar
[21]
Klocke, F., Lung, D., Essig, C., Sangermann, H., 2010, Automatisierte Produktion - ohne Spanbruch undenkbar. In: Zeitschrift für wirtschaftlichen Fabrikbetrieb ZWF, 105: 21-25.
DOI: 10.3139/104.110250
Google Scholar