An Error Model in Micro Dimple Milling

Article Preview

Abstract:

A micro dimple machining is studied to control the surface functions with the micro-scale structures on the solid surfaces. The micro dimples are machined in milling with the inclined ball end mill. When the feed rate of the tool is high enough that the removal area of an edge does not overlap with that of the previous edge, periodical concave dimples are machined. A mechanistic model is presented to control the shape and the size of the dimples to be machined. Then, a machining error model is presented to control the deviation of the dimple shapes. Some machining examples are shown to verify the dimple model and the error model.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

2072-2078

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.A.G. Bruzzone, H.L. Costa, P.M. Lonardo, D.A. Lucca, Advances in engineered surfaces for functional performance, CIRP Annals - Manufacturing Technology 57 (2008) 750–769.

DOI: 10.1016/j.cirp.2008.09.003

Google Scholar

[2] M. Wakuda, Y. Yamauchi, S. Kanzaki, Y. Yasuda, Y, Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact, Wear 254 (2003) 356–363.

DOI: 10.1016/s0043-1648(03)00004-8

Google Scholar

[3] P. Basnyat, B. Luster, C. Muratore, A.A. Voevodin, R. Haasch, R. Zakeri, P. Kohli, S.M. Aouadi, Surface texturing for adaptive solid lubrication, Surface & Coatings Technology 203 (2008) 73–79.

DOI: 10.1016/j.surfcoat.2008.07.033

Google Scholar

[4] A.A. Voevodin, J.S. Zabinski, Laser surface texturing for adaptive solid lubrication, Wear 261 (2006) 1285–1292.

DOI: 10.1016/j.wear.2006.03.013

Google Scholar

[5] N.T. Krupenkin, J.A. Taylor, M.T. Schneider, S. Yang, From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces, Langmuir 20 (2004) 3824-3827.

DOI: 10.1021/la036093q

Google Scholar

[6] A.D. Sommers, A.M. Jacobi, Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface, Journal of Micromechanics and Microengineering 16 (2006) 1571-1578.

DOI: 10.1088/0960-1317/16/8/018

Google Scholar

[7] T.I. Kim, T. Dongha, H.L. Hong, Wettability-Controllable Super Water- and Moderately Oil-Repellent Surface Fabricated by Wet Chemical Etching, Langmuir 25 (2009) 6576–6579.

DOI: 10.1021/la900106s

Google Scholar

[8] D. Zhu, N.S. Qu, H.S. Li, Y.B. Zeng, D.L. Li, S.Q. Qian, Electrochemical micromachining of microstructures of micro hole and dimple array, CIRP Annals - Manufacturing Technology 58 (2009) 177–180.

DOI: 10.1016/j.cirp.2009.03.004

Google Scholar

[9] D.P. Wan, B.K. Chen, Y.M. Shao, S.L. Wanga, D.J. Hu, Microstructure and mechanical characteristics of laser coating–texturing alloying dimples, Applied Surface Science 255 (2008) 3251–3256.

DOI: 10.1016/j.apsusc.2008.09.027

Google Scholar

[10] X. Luo, Y. Wang, P. Chen, L. Zhou, Investigation of CO2 laser beam modulation by rotating polygon, Optics and Lasers in Engineering 49 (2011) 132–136.

DOI: 10.1016/j.optlaseng.2010.08.006

Google Scholar

[11] Y.Q. Wang, G.F. Wu, Q.G. Han, L. Fang, S.R. Ge, Tribological properties of surface dimple-textured by pellet-pressing, Procedia Earth and Planetary Science 1 (2009) 1513–1518.

DOI: 10.1016/j.proeps.2009.09.233

Google Scholar

[12] S. Kogusu, T. Ishimatsu, Y. Ougiya, Rapid Generation of Surface Dimples Using End Milling, nternational Journal of Automation Technology 1(2007) 45-51.

DOI: 10.20965/ijat.2007.p0045

Google Scholar

[13] T. Matsumura, S. Takahashi, Machining of micro dimples in milling for functional surfaces, The 14th Int. ESAFORM Conf. on Material Forming, AIP Conf. Proc. 1353 (2011), 567-572.

DOI: 10.1063/1.3589575

Google Scholar

[14] T. Matsumura, S. Takahashi, Micro dimple milling on cylinder surfaces, Journal of Manufacturing Processes 14 (2012) 135–140.

DOI: 10.1016/j.jmapro.2011.12.002

Google Scholar