[1]
L. Vita, U.S. Paulsen, T.F. Pedersen, A novel floating offshore wind turbine concept: New Developments, European Wind Energy Conference (EWEC) 2010.
Google Scholar
[2]
U.S. Paulsen, L. Vita , A.H. Madsen, J.H. Hattel , E. Ritchie, K.M. Leban et al., 1st DeepWind 5 MW baseline design, Energy Procedia. 24 (2012) 27-35.
DOI: 10.1016/j.egypro.2012.06.083
Google Scholar
[3]
H.J. Sutherland, D.E. Berg, T.D. Ashwill, A retrospective of VAWT technology. Sandia Report, SAND2012-0304, January 2012.
Google Scholar
[4]
http://www.strongwell.com/pultrusion/ (visited, 22, Novemver, 2012)
Google Scholar
[5]
R.M. Hackett, S.N. Prasad, Pultrusion process modeling, Advances in Thermoplastic Matrix Composite Materials, ASTM STP. 1044 (1989) 62-70.
DOI: 10.1520/stp24595s
Google Scholar
[6]
X.L. Liu, I.G. Crouch, Y.C. Lam, Simulation of heat transfer and cure in pultrusion with a general-purpose finite element package, Compos Sci Technol. 60 (2000) 857-864.
DOI: 10.1016/s0266-3538(99)00189-x
Google Scholar
[7]
P. Carlone, G.S. Palazzo, R. Pasquino, Pultrusion manufacturing process development by computational modelling and methods, Math Comput Model. 44 (2006) 701-709.
DOI: 10.1016/j.mcm.2006.02.006
Google Scholar
[8]
P. Carlone, G.S. Palazzo, Pultrusion manufacturing process development: Cure optimization by hybrid computational methods, Comput Math Appl 53 (2007) 1464–1471.
DOI: 10.1016/j.camwa.2006.02.031
Google Scholar
[9]
P. Carlone, G.S. Palazzo, Viscous pull force evaluation in the pultrusion process by a finite element thermo-chemical rheological model, Int J Mater Form. Suppl 1 (2008) 831–834.
DOI: 10.1007/s12289-008-0264-0
Google Scholar
[10]
I. Baran, C.C. Tutum, J.H. Hattel, Optimization of the thermosetting pultrusion process by using hybrid and mixed integer genetic algorithms, App Compos Mat. 2012.
DOI: 10.1007/s10443-012-9278-3
Google Scholar
[11]
I. Baran, C.C. Tutum, J.H. Hattel, Reliability estimation of the pultrusion process using the first-order reliability method (FORM), App Compos Mat. 2012.
DOI: 10.1007/s10443-012-9293-4
Google Scholar
[12]
I. Baran, C.C. Tutum, J.H. Hattel, Probabilistic thermo-chemical analysis of a pultruded composite rod, Proceedings of the 15th European Conference on Composite Materials, ECCM-15, Venice, Italy, 24-28 June 2012.
Google Scholar
[13]
I. Baran, C.C. Tutum, J.H. Hattel, The effect of thermal contact resistance on the thermosetting pultrusion process, Compos Part B - Eng. 45 (2013) 995-1000.
DOI: 10.1016/j.compositesb.2012.09.049
Google Scholar
[14]
M. Valliappan, J.A. Roux, J.G. Vaughan, E.S. Arafat, Die and post-die temperature and cure in graphite-epoxy composites, Compos Part B - Eng. 27 (1996) 1-9.
DOI: 10.1016/1359-8368(95)00001-1
Google Scholar
[15]
Y.R. Chachad, J.A. Roux, J.G. Vaughan, E. Arafat, Three-dimensional characterization of pultruded fiberglass-epoxy composite materials, J Reinf Plast Comp. 14 (1995) 495-512.
DOI: 10.1177/073168449501400506
Google Scholar
[16]
M.R. Wisnom, M. Gigliotti, N. Ersoy, M. Campbell, K.D. Potter, Mechanisms generating residual stresses and distortion during manufacture of polymer–matrix composite structures, Compos Part A - Appl S. 37 (2006) 522-529.
DOI: 10.1016/j.compositesa.2005.05.019
Google Scholar
[17]
T. A. Bogetti, J. W. Gillespie Jr, Process-induced stress and deformation in thick-section thermoset composite laminates, J Compos Mater. 26(5) (1992) 626–660.
DOI: 10.1177/002199839202600502
Google Scholar
[18]
A. Johnston, An Integrated Model of the Development of Process-Induced Deformation in Autoclave Processing of Composites Structures, Ph.D. thesis, The University of British Columbia, Vancouver (1997).
Google Scholar
[19]
A. Johnston, R. Vaziri, A. Poursartip, A plane strain model for process-induced deformation of laminated composite structures, J Compos Mater. 35(16) (2001) 1435–1469.
DOI: 10.1177/002199801772662514
Google Scholar
[20]
N. Ersoy, T. Garstka, K. Potter, et al., Development of the properties of a carbon fibre reinforced thermosetting composite through cure, Compos Part A - Appl S 41 (2010) 401–409.
DOI: 10.1016/j.compositesa.2009.11.007
Google Scholar
[21]
L. Khoun, R. de Oliviera, V. Michaud, P. Hubert, Investigation of process-induced strains development by fibre Bragg grating sensors in resin transfer moulded composites, Compos Part A - Appl S 42 (2011) 274–282.
DOI: 10.1016/j.compositesa.2010.11.013
Google Scholar
[22]
M.W. Nielsen, J.W. Schmidt, J.H. Hattel, T.L. Andersen, C.M. Markussen, In situ measurement using FBGs of process-induced strains during curing of thick glass/epoxy laminate plate: Experimental results and numerical modeling, Wind Energy (2012).
DOI: 10.1002/we.1550
Google Scholar
[23]
N. Ersoy, T. Garstka, K. Potter, M.R. Wisnom, D. Porter, G. Stringer, Modelling of the spring-in phenomenon in curved parts made of a thermosetting composite, Compos Part A - Appl S 41 (2010) 410–418.
DOI: 10.1016/j.compositesa.2009.11.008
Google Scholar
[24]
Z. Boming, Y. Guangquan, Prediction of process-induced geometrical deformations for stiffened thermosetting composite panels, Poly Poly Compos 18(5) (2010) 263-273.
DOI: 10.1177/096739111001800504
Google Scholar
[25]
L. Khoun, P. Hubert, Cure shrinkage characterization of an epoxy resin system by two in situ measurement methods, Polymer Composites. 31(9) (2010) 1603-1610.
DOI: 10.1002/pc.20949
Google Scholar
[26]
C. Li, K. Potter, M.R. Wisnom, G. Stringer, In-situ measurement of chemical shrinkage of MY750 epoxy resin by a novel gravimetric method, Compos Part A - Appl S 64 (2004) 55-64.
DOI: 10.1016/s0266-3538(03)00199-4
Google Scholar
[27]
D. Zenkert, M. Battley, Laminate and sandwich structures: Foundations of fibre composites, Polyteknisk Forlag, Denmark, 2nd Edition (2009).
Google Scholar