[1]
J.C. Malas, W.G. Frazier, Intelligent control strategies for Metal forging processes, Materials & Manufacturing Dierectorate, Air force research laboratory, wright–Patterson Air Force Base, Ohio 45433, USA, (1998) 7:1-7:10.
Google Scholar
[2]
Badrinarayan K.Belur, Ramana V.Grandhi, Geometric deviations in forging and cooling operations due to process uncertainties, journal of materials processing technology, 152 (2004) 204-214.
DOI: 10.1016/j.jmatprotec.2004.02.064
Google Scholar
[3]
Kong L.X., S.Nahavandi, On-line tool condition monitoring and control system in forging processes, journal of materials processing technology. 125 (2002) 464-470.
DOI: 10.1016/s0924-0136(02)00367-9
Google Scholar
[4]
Xiaoming He, Zhongqi Yu, Xinmin Lai, Robust parameters control methodology of microstructure for heavy forgings based on taguchi method, journal of materials and design. 30 (2008) 2084-2089.
DOI: 10.1016/j.matdes.2008.08.039
Google Scholar
[5]
R.K. Ohdar, S.Pasha, Prediction of the process parameters of metal powder preform forging using artificial neural network (ANN), journal of materials processing technology. 132 (2003) 227-234.
DOI: 10.1016/s0924-0136(02)00931-7
Google Scholar
[6]
Young-Hyun Lee, R. Kopp, Application of fuzzy control for a hydraulic forging machine, Fuzzy Sets and Systems. 118 (2001) 99-108.
DOI: 10.1016/s0165-0114(98)00464-3
Google Scholar
[7]
A.K. Sahoo, M.K. Tiwari, A.R. Mileham, Six sigma based approach to optimize radial forging operation variables, Journal of Materials Processing Technology. 202 (2008) 125-136.
DOI: 10.1016/j.jmatprotec.2007.08.085
Google Scholar
[8]
E.V. Gijo, Johny Scaria, Jiju Antony, Application of six sigma methodology to reduce defects of a grinding process, quality and reliability engineering international, wiley online library. 27 (2011) 1221-1234.
DOI: 10.1002/qre.1212
Google Scholar
[9]
M.Arentoft, T.Wanheim, The basis for a design support system to prevent defects in forging, Journal of materials processing technology. 69 (1997) 227-232.
DOI: 10.1016/s0924-0136(97)00023-x
Google Scholar
[10]
CETIM, Classification des défauts de forge, ISBN:978-2-85400-901-9, (2009).
Google Scholar
[11]
Pierre THEVENET, Technique de l'ingénieur: Mise en forme de l'acier par estampage, Référence M710/10, (1990).
DOI: 10.51257/a-v1-m710
Google Scholar
[12]
Finn Jørgensen, Overview of function modeling – IDEF0, Information Management in Computer Integrated Manufacturing, 973 (1995) 340-354.
Google Scholar
[13]
Norme européenne NF EN 10243-1 Pièces forgées par estampage en acier, Tolérances dimensionnelles. Partie 1 : Pièces exécutées à chaud sur marteaux-pilons ou presses verticales, (1999).
Google Scholar
[14]
J.C.B. Gonzaga, L.A.C Meleiro,C. Kiang,R. Maciel Filho, ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process, computers and chemical engineering. 33 (2009) 43–49.
DOI: 10.1016/j.compchemeng.2008.05.019
Google Scholar
[15]
R.Rallo, J.Ferre-Gine, A.Arenas, Francesc Giralt, Neural virtual sensor for the inferential prediction of product quality from process variables, computers and chemical engineering. 26 (2002) 1735-1754.
DOI: 10.1016/s0098-1354(02)00148-5
Google Scholar
[16]
J.P. Feng, Z.J. Luo, A method for the optimal control of forging process variables using the finite element method and control theory, Journal of materials processing technology. 108 (2000) 40-44.
DOI: 10.1016/s0924-0136(00)00654-3
Google Scholar